首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Negative Reynolds stress generation by accretion disc convection
Authors:G Rüdiger  R Tschäpe  L L Kitchatinov
Institution:1Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany and; 2Institute for Solar-Terrestrial Physics, PO Box 4026, Irkutsk, 664033, Russia
Abstract:The phenomenon of negative viscosity-alpha in convectively unstable Keplerian accretion discs is discussed. The convection is considered as a random flow with an axisymmetric mesoscale pattern. Its correlation tensor is computed with a time-averaging procedure using Kley's 2D hydrocode. There is a distinct anisotropy between the turbulence intensities in the radial and azimuthal directions, i.e. the radial velocity rms dominates the azimuthal one. As a consequence, an extra term in the expression for the turbulent transport of angular momentum appears which does not vanish for rigid rotation ('Λ-effect'). It is negative ('inwards transport') and even seems to dominate the positive contribution of the eddy viscosity representing outwards transport of angular momentum. For a turbulence model close to that of the mixing-length theory, the rotational influence on the anisotropy of the turbulence intensities,     , and the covariance  〈 u ' R u ' φ 〉  – representing the angular momentum transport – is computed and compared with the accretion disc simulations. Indeed, the negative angular momentum transport can be explained with the observed dominance of the radial turbulence intensity. If, on the other hand, in turbulence fields the azimuthal intensity would dominate or the turbulence is even isotropic, then we always find a positive transport of the angular momentum.
Keywords:accretion  accretion discs  convection  planetary systems: protoplanetary discs
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号