South Indian Ocean Rossby Waves |
| |
Authors: | Mark R. Jury |
| |
Affiliation: | 1. Geography Department, University of Zululand, KwaDlangezwa 3886, South Africa;2. Physics Department, University of Puerto Rico Mayagüez, Mayagüez, PR 00681, USAmark.jury@upr.edu |
| |
Abstract: | ABSTRACTSouth Indian Ocean Rossby waves (SIO-RW) are identified in the Global Ocean Data Assimilation System (GODAS) 1.5–7?yr filtered sea surface height (SSH) time series. There is a persistent three-year oscillation in the 5°–15°S latitude band from 55° to 85°E. Field correlations show little coupling at 90°E, but as the SIO-RW undulates westward at approximately 0.19?m?s?1 across the mid-basin, a northwest–southeast axis of warm sea surface temperatures (SSTs) and deep convection forms. Many teleconnections in earlier work are confirmed: interannual pulses of zonal wind in the eastern basin trigger the SIO-RW via anticyclonic wind stress curl. New insights derive from an understanding of links with the upper troposphere. As the SIO-RWs move westward with the onset of an El Niño in the Pacific, increased convection over the north Indian Ocean corresponds to reduced evaporation and SST warming. Mid-tropospheric heating T′?>?2°C over the northwest Indian Ocean accelerates the southern sub-tropical jet to greater than 10?m?s?1 over the southeast Indian Ocean, reinforcing the anticyclonic vorticity. The downstream acceleration of the jet generates upper-level divergence and moist convection over the western basin, anchoring an atmospheric Rossby wave in a northwest–southeast alignment underpinned by differential propagation of the SIO-RW. As the ocean Rossby wave reaches Africa, the coupling fades and transitions. What distinguishes Indian Ocean from Pacific Ocean Rossby waves are their southern latitude and higher frequency. The tropical mid-tropospheric heating that accelerates the southern sub-tropical jet shifts westward in tandem with the SIO-RW. |
| |
Keywords: | South Indian Ocean Rossby waves |
|
|