首页 | 本学科首页   官方微博 | 高级检索  
     

随机森林回归法在冬季路面温度预报中的应用
引用本文:王可心,包云轩,朱承瑛,陈粲,袁成松. 随机森林回归法在冬季路面温度预报中的应用[J]. 气象, 2021, 47(1): 82-93
作者姓名:王可心  包云轩  朱承瑛  陈粲  袁成松
作者单位:南京信息工程大学气象灾害预报预警与评估协同创新中心,南京 210044;中国气象局交通气象重点开放实验室,南京 210009;南京信息工程大学应用气象学院,南京 210044;中国气象局交通气象重点开放实验室,南京 210009;南京信息工程大学气象灾害预报预警与评估协同创新中心,南京 210044;中国气象局交通气象重点开放实验室,南京 210009
基金项目:2018年度交通运输行业重点科技项目(2018-MS4-102);2018年度云交设计公司自立科技项目(ZL-2018-04)共同资助。
摘    要:
基于宁宿徐高速公路三个交通气象站2015—2018年冬季逐10 min实时观测资料,使用随机森林回归模型预报这三个站的未来1h冬季路面温度,分析了该模型在冬季路面温度预报中的可行性和适用性.研究结果表明:随机森林回归法可以被用来预报高速公路冬季路面温度,不同类型的交通气象站点的特征输入方案和参数调试标准存在差异;与简单...

关 键 词:冬季路面温度  机器学习  随机森林  CART回归树  预报效果评估

Forecasts of Road Surface Temperature in Winter Based on Random Forests Regression
WANG Kexin,BAO Yunxuan,ZHU Chengying,CHEN Can,YUAN Chengsong. Forecasts of Road Surface Temperature in Winter Based on Random Forests Regression[J]. Meteorological Monthly, 2021, 47(1): 82-93
Authors:WANG Kexin  BAO Yunxuan  ZHU Chengying  CHEN Can  YUAN Chengsong
Affiliation:(Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster,Nanjing University of Information Science and Technology,Nanjing 210044;Key Laboratory of Transpotation Meteorology,CMA,Nanjing 210009;School of Applied Meteorology,Nanjing University of Information Science and Technology,Nanjing 210044)
Abstract:
Based on the data of three traffic meteorological stations set on Nanjing-Suqian-Xuzhou Expressway observed every ten minutes during 2015-2018,the random forests regression is used to forecast the road surface temperature in the next hour in winter and the feasibility and applicability of the models were analyzed.The results are as follows.The random forests regression method can be used to predict the road surface temperature of the expressway in winter,and the feature input scheme and the parameter debugging are different in different types of traffic meteorological stations.Compared with the simple features,the complex features can replenish and explain the environment and meteorological elements of the traffic meteorological stations better,and they have a higher degree of differentiation between the ordinary road traffic meteorological stations and the traffic meteorological stations near the bridge and water.Thus,the model has a good forecast effect on the general road traffic meteorological stations and the traffic meteorological stations near the water and bridges,but a little poor forecast effect on the traffic meteorological stations in the service areas.The reduction of the average error rate out of bag does not mean the improvement of the prediction accuracy.The random forest regression model simulated from the complex features can be used to predict the road surface temperature of different types of traffic weather stations in winter no matter in what weather conditions.The forecast effect is the best in rainy and snowy days,followed by in ouvercast days,but slightly worse in sunny days.
Keywords:road surface temperature in winter  machine learning  random forests regression  classification and regression tree  evaluation of prediction result
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号