首页 | 本学科首页   官方微博 | 高级检索  
     


An empirical equation for tunnel inflow assessment: application to sedimentary rock masses
Authors:Paola Gattinoni  Laura Scesi
Affiliation:1. DIIAR – Politecnico di Milano, P.zza Leonardo da Vinci 32, 20155, Milano, Italy
Abstract:Groundwater inflow assessment is essential for the design of tunnel drainage systems, as well as for assessment of the environmental impact of the associated drainage. Analytical and empirical methods used in current engineering practice do not adequately account for the effect of the jointed-rock-mass anisotropy and heterogeneity. The impact of geo-structural anisotropy of fractured rocks on tunnel inflows is addressed and the limitations of analytical solutions assuming isotropic hydraulic conductivity are discussed. In particular, the study develops an empirical correction to the analytical formula frequently used to predict groundwater tunnel inflow. In order to obtain this, a discrete network flow modelling study was carried out. Numerical simulation results provided a dataset useful for the calibration of some empirical coefficient to correct the well-known Goodman’s equation. This correction accounts for geo-structural parameters of the rock masses such as joint orientation, aperture, spacing and persistence. The obtained empirical equation was then applied to a medium-depth open tunnel in Bergamo District, northern Italy. The results, compared with the monitoring data, showed that the traditional analytical equations give the highest overestimation where the hydraulic conductivity shows great anisotropy. On the other hand, the empirical relation allows a better estimation of the tunnel inflow.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号