首页 | 本学科首页   官方微博 | 高级检索  
     

基于主成分分析法的戈壁地表砾石粒径遥感估测模型研究
引用本文:姚爱冬,曹晓阳,冯益明. 基于主成分分析法的戈壁地表砾石粒径遥感估测模型研究[J]. 中国沙漠, 2014, 34(5): 1215-1221. DOI: 10.7522/j.issn.1000-694X.2013.00362
作者姓名:姚爱冬  曹晓阳  冯益明
作者单位:中国林业科学研究院 荒漠化研究所, 北京 100091
基金项目:国家自然科学基金项目(31370708)资助
摘    要:
戈壁地表砾石粒径与遥感多光谱数据、植被指数及地学因子存在相关关系,但这些因子间可能存在着多重相关性,如利用这些因子直接建模估测戈壁地表砾石粒径,则可能出现病态模型。利用主成分分析法筛选因子,既可保留多个相关因子的主要信息,又可避免因子间共线性的问题,达到降维、简化模型的效果。因此,本文以新疆哈密市境内山前洪积扇戈壁地表砾石为研究对象,以2010年Landsat TM遥感影像及30 m分辨率DEM为基本数据源,采用主成分分析法,从选择的43个遥感及地学因子(主要包括影像各波段信息、DEM、NDVI、 GEMI,影像经K-T变换得到SBI、GVI、WVI三个分量,通过纹理分析得到的各个波段的均值、方差、信息熵、相关性及对比度等纹理因子,以及利用DEM提取的粗糙度等)中,筛选提取其主成分。结果表明,第一主成分至第五主成分的累计贡献率达98.0%,以前5个主成分作为自变量,借助SPSS软件中的多元回归分析功能,建立戈壁地表砾石粒径估测的回归模型,模型经方差分析及相关性检验,达到显著相关水平。基于建立的估测模型,进行了戈壁地表砾石粒径估测,经验证,实测值与估算值紧密相关。研究可帮助我们了解戈壁的特征,为戈壁区改造利用,认识沙粒迁移、沙漠扩展提供技术支持。

关 键 词:戈壁  砾石粒径  主成分分析  遥感  哈密  
收稿时间:2013-10-29;
修稿时间:2013-12-11

Remote-sensing Model for Estimating the Size of Gobi Surface Gravel Based on Principal Components Analysis
Yao Aidong,Cao Xiaoyang,Feng Yiming. Remote-sensing Model for Estimating the Size of Gobi Surface Gravel Based on Principal Components Analysis[J]. ournal of Desert Research, 2014, 34(5): 1215-1221. DOI: 10.7522/j.issn.1000-694X.2013.00362
Authors:Yao Aidong  Cao Xiaoyang  Feng Yiming
Affiliation:Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
Abstract:
The size of gobi surface gravel is correlated to the factors such as multispectral remote sensing data, vegetation indexes and geological factors. However, these factors are usually strongly correlative. The size of gobi surface gravel model will become an ill-posed one if the model is built directly with the factors. The principal components (PCs) for those factors are obtained by principal components analysis (PCA). In that case, not only the main information of these factors can be reserved in the model, the multicolliearity problem of the factors can also be avoided. Moreover, the number of the variables decreases and the model is optimized. Based on the data obtained from Landsat TM images of 2010 and 30 m DEM at a alluvial-fan in Hami, Xinjiang, China, the paper analyzes the PCs by PCA for the 43 factors, which include 6 multi-spectral bands, 2 kinds of vegetation index of NDVI and GEMI, surface roughness generated from DEM, mean, variance, entropy, correlation and contrast extracted from texture analysis. The results show that the accumulative ratio of contribution of the first 5 PCs is 98.0%. Then the size of gobi surface gravel model is set up by regression analysis of SPSS 18 based on these first 5 PCs. F test examination shows that the size of gobi surface gravel is correlated significantly to these first 5 PCs. Finally, the study estimates the size of gobi surface gravel based on the model, and the precision is above 80%. We could learn about the gobi characteristics, cognize the laws of sand grain move and desert extension by studying the grain size of gobi surface gravel.
Keywords:gobi  size of gravel  principal components analysis  remote sensing  Hami
本文献已被 CNKI 等数据库收录!
点击此处可从《中国沙漠》浏览原始摘要信息
点击此处可从《中国沙漠》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号