首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mesozooplankton in the Arctic Ocean in summer
Institution:1. Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway;2. Department of Biology and Hjort Centre for Marine Ecosystem Dynamics, University of Bergen, PO Box 7803, 5020 Bergen, Norway;3. Knipovich Polar Research Institute of Marine Fisheries and Oceanography (PINRO), 6 Academician Knipovich Street, 183038 Murmansk, Russia;4. Uni Research and Hjort Centre for Marine Ecosystem Dynamics, PO Box 7810, 5020 Bergen, Norway
Abstract:The biomass, species and chemical composition of the mesozooplankton and their impact on lower food levels were estimated along a transect across the Arctic Ocean. Mesozooplankton biomass in the upper 200 m of the water column was significantly higher (19–42 mg DW m-3) than has previously been reported for the Arctic Ocean, and it reached a maximum at ca. 87°N in the Amundsen Basin. The lowest values were recorded in the Chukchi Sea and Nansen Basin, where ice cover was lower (50–80%) than in the central Arctic Ocean. In the deeper strata (200–500 m) of the Canadian and Eurasian Basins, the biomass was always much lower (4.35–16.44 mg DW m-3). The C/N (g/g) ratio for the mesozooplankton population was high (6.5–8.5) but within the documented range. These high values (when compared to 4.5 at lower latitudes) may be explained by the high lipid content. Mesozooplankton accounted for approximately 40% of the total particulate organic carbon in the upper 100 m of the water column. Mesozooplankton species composition was homogeneous along the transect, consisting mainly of copepods (70–90% of the total number). It was dominated by four large copepod species (Calanus hyperboreus, C. glacialis, C. finmarchicus and Metridia longa), which together accounted for more than 80% of the total biomass. According to measurements of gut pigment and gut turnover rates, the mesozooplankton on average ingested between 6 and 30% of their body carbon per day as phytoplankton. Microzooplankton may have provided an additional source of energy for the mesozooplankton community. These data emphasize the importance of mesozooplankton in the arctic food web and reinforce the idea that the Arctic Ocean should no longer be considered to be a “biological desert”.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号