首页 | 本学科首页   官方微博 | 高级检索  
     


The influence of isoprene peroxy radical isomerization mechanisms on ozone simulation with the presence of NOx
Authors:Haofei Zhang  Richard M. Kamens
Affiliation:1. Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, 27599, USA
Abstract:Isoprene peroxy radical isomerizations (1,5- and 1,6-H shifts) have recently been proposed as important pathways regenerating and recycling HOx (OH?+?HO2) in the atmosphere under low-NOx conditions (Peeters et al. Phys. Chem. Chem. Phys. 28: 5935?C5939 2009; da Silva et al. Environ. Sci. Technol. 44:250?C256 2010). Evaluation and comparison of the isoprene peroxy radical isomerization mechanisms from recent studies have been performed against isoprene-NOx experiments conducted in the UNC dual outdoor smog chambers. Five different kinetic mechanisms were tested in this study, including the original Master Chemical Mechanism (MCM) v3.1; two modified MCM mechanisms both implementing isoprene peroxy radical isomerization reactions but with different rate coefficients; the Carbon Bond 6 (CB6) mechanism; and the ISO-UNC mechanism. Sensitivity analyses of the unsaturated hydroxyperoxy aldehydes (HPALDs) reaction mechanisms under fast isomerization have also been performed. The results indicate that the fast isomerization mechanism and the mechanisms with high OH yields from HPALDs photolysis both significantly enhance HOx estimates with increasing isoprene/NOx ratios. However, O3 predictions, as well the isoprene decay rates are substantially overestimated. Our results suggest that given the current state of our knowledge, it is difficult to improve both HOx levels and maintain reasonable O3 simulations using the Peeters et al. (Peeters et al. Phys. Chem. Chem. Phys. 28: 5935?C5939 2009) mechanism.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号