首页 | 本学科首页   官方微博 | 高级检索  
     


Coupled finite‐element simulation of injection well testing in unconsolidated oil sands reservoir
Authors:Bin Xu  Ron C.K. Wong
Affiliation:Department of Civil Engineering, Schulich School of Engineering, University of Calgary, , Calgary, Alberta, Canada, T2N 1N4
Abstract:
This paper presents a finite‐element (FE) model for simulating injection well testing in unconsolidated oil sands reservoir. In injection well testing, the bottom‐hole pressure (BHP) is monitored during the injection and shut‐in period. The flow characteristics of a reservoir can be determined from transient BHP data using conventional reservoir or well‐testing analysis. However, conventional reservoir or well‐testing analysis does not consider geomechanics coupling effects. This simplified assumption has limitations when applied to unconsolidated (uncemented) oil sands reservoirs because oil sands deform and dilate subjected to pressure variation. In addition, hydraulic fracturing may occur in unconsolidated oil sands when high water injection rate is used. This research is motivated in numerical modeling of injection well testing in unconsolidated oil sands reservoir considering the geomechanics coupling effects including hydraulic fracturing. To simulate the strong anisotropy in mechanical and hydraulic behaviour of unconsolidated oil sands induced by fluid injection in injection well testing, a nonlinear stress‐dependent poro‐elasto‐plastic constitutive model together with a strain‐induced anisotropic permeability model are formulated and implemented into a 3D FE simulator. The 3D FE model is used to history match the BHP response measured from an injection well in an oil sands reservoir. Copyright © 2013 John Wiley & Sons, Ltd.
Keywords:injection well testing  unconsolidated oil sands  finite‐element method  shear dilation  hydraulic fracturing  permeability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号