首页 | 本学科首页   官方微博 | 高级检索  
     

类多变量输出误差系统的耦合多新息辨识方法
引用本文:丁锋,汪菲菲,汪学海. 类多变量输出误差系统的耦合多新息辨识方法[J]. 南京气象学院学报, 2014, 6(3): 193-210
作者姓名:丁锋  汪菲菲  汪学海
作者单位:江南大学 物联网工程学院, 无锡, 21412;江南大学 控制科学与工程研究中心, 无锡, 214122;江南大学 教育部轻工过程先进控制重点实验室, 无锡, 214122;江南大学 物联网工程学院, 无锡, 21412;江南大学 物联网工程学院, 无锡, 21412
基金项目:国家自然科学基金(61273194);江苏省自然科学基金(BK2012549)
摘    要:辅助模型辨识思想、多新息辨识理论、耦合辨识概念是研究复杂多变量系统辨识的新理念和原理.将它们结合起来研究类多变量输出误差系统的辨识问题,提出了多元辅助模型辨识方法、多元辅助模型多新息辨识方法、变递推间隔多元辅助模型多新息辨识方法.为减小算法的计算量和提高参数估计精度,将系统模型分解为一些子辨识模型,应用辅助模型辨识思想、多新息辨识理论、耦合辨识概念,研究和推导了部分耦合辅助模型辨识方法、部分耦合辅助模型多新息辨识方法.讨论了几个典型辨识算法的计算量,给出了参数估计的计算步骤和计算流程图.

关 键 词:参数估计  递推辨识  梯度搜索  最小二乘  辅助模型辨识思想  多新息辨识理论  递阶辨识原理  耦合辨识概念  类多变量系统
收稿时间:2014-06-07

Coupled multi-innovation identification methods for multivariable output-error-like systems
DING Feng,WANG Feifei and WANG Xuehai. Coupled multi-innovation identification methods for multivariable output-error-like systems[J]. Journal of Nanjing Institute of Meteorology, 2014, 6(3): 193-210
Authors:DING Feng  WANG Feifei  WANG Xuehai
Affiliation:School of Internet of Things Engineering, Jiangnan University, Wuxi 21412;Control Science and Engineering Research Center, Jiangnan University, Wuxi 214122;Key Laboratory of Advanced Process Control for Light Industry(Ministry of Education), Jiangnan University, Wuxi 214122;School of Internet of Things Engineering, Jiangnan University, Wuxi 21412;School of Internet of Things Engineering, Jiangnan University, Wuxi 21412
Abstract:The auxiliary model identification idea,the multi-innovation identification theory and the coupling identification concept are the new ideas and principles for studying identification problems of complex systems.Combining them,this paper studies the identification methods of multivariable output-error-like systems and presents multivariate auxiliary model identification methods,multivariate auxiliary model based multi-innovation identification methods,interval-varying multivariate auxiliary model based multi-innovation identification methods.In order to reduce the computational complexity of the algorithms,we decompose the system into several sub-identification models and derive the partially coupled auxiliary model based identification methods and the partially coupled auxiliary model based multi-innovation identification methods,using the auxiliary model identification idea,the multi-innovation identification theory and the coupling identification concept.Finally,the computational efficiency,the computational steps and the flowcharts of some typical identification algorithms are discussed.
Keywords:parameter estimation  recursive identification  gradient search  least squares  auxiliary model identification idea  multi-innovation identification theory  hierarchical identification principle  coupling identification concept  multivariable-like system
点击此处可从《南京气象学院学报》浏览原始摘要信息
点击此处可从《南京气象学院学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号