首页 | 本学科首页   官方微博 | 高级检索  
     

交叉熵神经网络及其在闽北大雨以上降水预报中的应用
引用本文:吴木贵,江彩英,张信华,赖荣钦. 交叉熵神经网络及其在闽北大雨以上降水预报中的应用[J]. 南京气象学院学报, 2012, 4(3): 220-225
作者姓名:吴木贵  江彩英  张信华  赖荣钦
作者单位:福建省建阳气象雷达站, 建阳, 354200;福建省南平市气象局, 南平, 353000;福建省南平市气象局, 南平, 353000;福建省建阳气象雷达站, 建阳, 354200
基金项目:福建省自然科学基金(2008J0241)
摘    要:
基于误差平方和最小化准则的BP神经网络(ANN-MSE)并不适合解决小概率天气事件的预报问题,引进一种改进的以交叉熵函数为目标函数的神经网络方法(ANN-CE),该法是一个三层反向传播神经网络,其输出层只用一个节点.利用2003-2008年的ECMWF预报场资料,把该法用于福建省南平市4-6月部分大雨或以上降水96h预报中,分别用原始因子和PCA降维后的主因子建立了ANN-CE预报模型和ANN-MSE预报模型,用这些模型对2009-2010年独立样本进行了试报.测试结果显示主因子预报模型TS评分比原始因子预报模型高且漏报次数少,其中,主因子ANN-CE预报模型的TS评分和漏报率分别是0.51和0.17,其性能是所有模型中最好且最为稳定的,是一种适合于小概率事件预报的方法.

关 键 词:BP神经网络  交叉熵  分类预报  小概率事件
收稿时间:2010-10-08

Application of BP neural network using cross-entropy to 96 hours forecast of heavy precipitation event in northern Fujian province
WU Mugui,JIANG Caiying,ZHANG Xinhua and LAI Rongqin. Application of BP neural network using cross-entropy to 96 hours forecast of heavy precipitation event in northern Fujian province[J]. Journal of Nanjing Institute of Meteorology, 2012, 4(3): 220-225
Authors:WU Mugui  JIANG Caiying  ZHANG Xinhua  LAI Rongqin
Affiliation:Jianyang Meteorological Radar Station of Fujian Province, Jianyang 354200;Nanping Meteorological Office of Fujian Province, Nanping 353000;Nanping Meteorological Office of Fujian Province, Nanping 353000;Jianyang Meteorological Radar Station of Fujian Province, Jianyang 354200
Abstract:
As a neural network based on MSSE,ANN-MSE is not an appropriate solution to the problem of predicting rare weather event.In this paper,an improved neural network method,ANN-CE is presented,which is a three layered back-propagation neural network with one output unit.The error function of ANN-CE is a cross entropy function.Then utilizing ECMWF forecast fields data,this method was applied to 96 hours forecast of heavy precipitation event in northern Fijian province.The ANN-CE model and the ANN-MSE model based on original factor and principle component after PCA reducing dimensions were respectively built.These models were applied to independent samples in 2009-2010,and the test results are as following:TS grade for model based on principal component is higher than that of model based on original factors;miss-rate for the ANN-CE model is lower than that of the ANN-MSE model.All in all,ANN-CE model based on principal component has best performance and stability,whose TS grade and miss-rate was respectively 0.51 and 0.17,so it was suited for forecasting rare event.
Keywords:BP neural network  cross entropy  categorical forecast  rare event
点击此处可从《南京气象学院学报》浏览原始摘要信息
点击此处可从《南京气象学院学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号