首页 | 本学科首页   官方微博 | 高级检索  
     


Input data resolution‐induced uncertainty in watershed modelling
Authors:Abhijit Patil  Zhi‐Qiang Deng  Ronald F. Malone
Affiliation:Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
Abstract:
The temporal‐spatial resolution of input data‐induced uncertainty in a watershed‐based water quality model, Hydrologic Simulation Program‐FORTRAN (HSPF), is investigated in this study. The temporal resolution‐induced uncertainty is described using the coefficient of variation (CV). The CV is found to decrease with decreasing temporal resolution and follow a log‐normal relation with time interval for temperature data while it exhibits a power‐law relation for rainfall data. The temporal‐scale uncertainties in the temperature and rainfall data follow a general extreme value distribution and a Weibull distribution, respectively. The Nash‐Sutcliffe coefficient (NSC) is employed to represent the spatial resolution induced uncertainty. The spatial resolution uncertainty in the dissolved oxygen and nitrate‐nitrogen concentrations simulated using HSPF is observed to follow a general extreme value distribution and a log‐normal distribution, respectively. The probability density functions (PDF) provide new insights into the effect of temporal‐scale and spatial resolution of input data on uncertainties involved in watershed modelling and total maximum daily load calculations. This study exhibits non‐symmetric distributions of uncertainty in water quality modelling, which simplify weather and water quality monitoring and reducing the cost involved in flow and water quality monitoring. Copyright © 2011 John Wiley & Sons, Ltd.
Keywords:Temporal‐scale  spatial resolution  uncertainty  landuse  temperature  rainfall  HSPF model
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号