首页 | 本学科首页   官方微博 | 高级检索  
     


Assessing possible changes in flood frequency due to climate change in mid‐sized watersheds in New York State,USA
Authors:Stephen B. Shaw  Susan J. Riha
Affiliation:Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY
Abstract:
The frequency of flooding is often presumed to increase with climate change because of projected increases in rainfall intensities. In this paper, using 50‐plus years of historical discharge and meteorological data from three watersheds in different physiographic regions of New York State, USA, we find that annual maximum stream discharges are associated with 20% or less of the annual maximum rainfall events. Instead of rainfall events, approximately 20% of annual maximum stream discharges are associated with annual maximum snowmelt events while 60% of annual maximum discharges are associated with moderate rainfall amounts and very wet soil conditions. To explore the potential for changes in future flood risk, we employed a compound frequency distribution that assumes annual maximum discharges can be modelled by combining the cumulative distribution functions of discharges resulting from annual maximum rainfall, annual maximum snowmelt, and occurrences of moderate rain on wet soils. Basing on a compound frequency distribution comprised of univariate general extreme value (GEV) and gamma distributions, we found that a hypothetical 20% increase in the magnitude of rainfall‐related stream discharge results in little change in 96th percentile annual maximum discharge. For the 99th percentile discharge, two waterbodies in our study had a 10% or less increase in annual maximum discharge when annual maximum rainfall‐related discharges increased 20% while the third waterbody had a 16% increase in annual maximum discharges. Additionally, in some cases, annual maximum discharges could be offset by a reduction in the discharge resulting from annual maximum snowmelt events. While only intended as a heuristic tool to explore the interaction among different flood‐causing mechanisms, use of a compound flood frequency distribution suggests a case can be made that not all waterbodies in humid, cold regions will see extensive changes in flooding due to increased rainfall intensities. Copyright © 2011 John Wiley & Sons, Ltd.
Keywords:climate change  flooding  precipitation intensity  New York State
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号