首页 | 本学科首页   官方微博 | 高级检索  
     


Thermodynamics of mixing in diopside–jadeite,CaMgSi2O6–NaAlSi2O6, solid solution from static lattice energy calculations
Authors:Victor L. Vinograd  Julian D. Gale  Björn Winkler
Affiliation:1.Institute of Geosciences,University of Frankfurt,Frankfurt,Germany;2.Nanochemistry Research Institute, Department of Applied Chemistry,Curtin University of Technology,Perth,Australia
Abstract:Static lattice energy calculations (SLEC), based on empirical interatomic potentials, have been performed for a set of 800 different structures in a 2 × 2 × 4 supercell of C2/c diopside with compositions between diopside and jadeite, and with different states of order of the exchangeable Na/Ca and Mg/Al cations. Excess static energies of these structures have been cluster expanded in a basis set of 37 pair-interaction parameters. These parameters have been used to constrain Monte Carlo simulations of temperature-dependent properties in the range of 273–2,023 K and to calculate a temperature–composition phase diagram. The simulations predict the order–disorder transition in omphacite at 1,150 ± 20°C in good agreement with the experimental data of Carpenter (Mineral Petrol 78:433–440, 1981). The stronger ordering of Mg/Al within the M1 site than of Ca/Na in the M2 site is attributed to the shorter M1–M1 nearest-neighbor distance, and, consequently, the stronger ordering force. The comparison of the simulated relationship between the order parameters corresponding to M1 and M2 sites with the X-ray refinement data on natural omphacites (Boffa Ballaran et al. in Am Mineral 83:419–433, 1998) suggests that the cation ordering becomes kinetically ineffective at about 600°C.
Keywords:Diopside–  jadeite solid solution  Atomistic simulations  Activity–  composition relations
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号