Abstract: | This paper describes the preliminary development of a network‐index approach to modify and to extend the classic TOPMODEL. Application of the basic Beven and Kirkby form of TOPMODEL to high‐resolution (2·0 m) laser altimetric data (based upon the UK Environment Agency's light detection and ranging (LIDAR) system) to a 13·8 km2 catchment in an upland environment identified many saturated areas that remained unconnected from the drainage network even during an extreme flood event. This is shown to be a particular problem with using high‐resolution topographic data, especially over large appreciable areas. To deal with the hydrological consequences of disconnected areas, we present a simple network index modification in which saturated areas are only considered to contribute when the topographic index indicates continuous saturation through the length of a flow path to the point where the path becomes a stream. This is combined with an enhanced method for dealing with the problem of pits and hollows, which is shown to become more acute with higher resolution topographic data. The paper concludes by noting the implications of the research as presented for both methodological and substantive research that is currently under way. Copyright © 2004 John Wiley & Sons, Ltd. |