Some aspects of transformations of compositional data and the identification of outliers |
| |
Authors: | Carles Barceló , Vera Pawlowsky Eric Grunsky |
| |
Affiliation: | (1) Departament d'Informàtica i Matemàtica Aplicada, Universitat de Girona, 17071 Girona, Spain;(2) Departament de Matemàtica Aplicada III, Universitat Politècnica de Catalunya, Gran Capità, s/n. 08034 Barcelona, Spain;(3) G.S.B., Ministry of Energy, Mines & Petroleum Resources, Victoria, B.C., Canada |
| |
Abstract: | The statistical analysis of compositional data is based on determining an appropriate transformation from the simplex to real space. Possible transfonnations and outliers strongly interact: parameters of transformations may be influenced particularly by outliers, and the result of goodness-of-fit tests will reflect their presence. Thus, the identification of outliers in compositional datasets and the selection of an appropriate transformation of the same data, are problems that cannot be separated. A robust method for outlier detection together with the likelihood of transformed data is presented as a first approach to solve those problems when the additive-logratio and multivariate Box-Cox transformations are used. Three examples illustrate the proposed methodology. |
| |
Keywords: | outliers compositional data additive-logratio transformation mullivariate Box-Cox transformations |
本文献已被 SpringerLink 等数据库收录! |
|