首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于粗糙集分类的图像压缩方法
引用本文:刘燕,张学庆,杨绍国. 一种基于粗糙集分类的图像压缩方法[J]. 物探化探计算技术, 2002, 24(2): 174-177
作者姓名:刘燕  张学庆  杨绍国
作者单位:成都理工大学,信息工程学院,成都,610059
摘    要:
作者在文中提出了一种基于粗糙集分类的智能图像压缩方法,图像子块经过DCT变换、特征属性提取后,再利用粗糙集将DCT域图像子块分为平坦块和边缘块两类,并针对不同的子块类别分别应用不同的SOFM神经网络进行矢量量化,最终实现对图像的有效压缩。实验结果表明,该方法压缩比高,信噪比高,信道误码率低,解码速度快,图像恢复效果好。

关 键 词:图像压缩 粗糙集 矢量量化 SOFM神经网络 DCT变换 信噪比
文章编号:1001-1749(2002)02-0174-04
修稿时间:2001-11-29

IMAGE COMPRESSION METHOD BASED ON ROUGH SET CLASSIFICATION
LIU Yan,ZHANG Xue qing,YANG Shao guo. IMAGE COMPRESSION METHOD BASED ON ROUGH SET CLASSIFICATION[J]. Computing Techniques For Geophysical and Geochemical Explorationxploration, 2002, 24(2): 174-177
Authors:LIU Yan  ZHANG Xue qing  YANG Shao guo
Abstract:
In this paper we show an intelligent method based on rough sets classification for image compression. Rough sets classification is used to select features from image blocks in DCT domain and classifies the blocks into two classes, plain and edge blocks. Two different SOFM networks are used to quantify them respectively. The results of test with this method show high compression ratio, high signal to noise ratio, low errors of coding, high decoding speed and fine resuming effect on subject.
Keywords:image compression  rough sets  vector quantization  SOFM neural network  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号