首页 | 本学科首页   官方微博 | 高级检索  
     

沿圆曲线的Radon变换数值解
引用本文:汪琳, 渠刚荣. 沿圆曲线的Radon变换数值解[J]. CT理论与应用研究, 2020, 29(3): 329-336. DOI: 10.15953/j.1004-4140.2020.29.03.09
作者姓名:汪琳  渠刚荣
作者单位:北京交通大学理学院, 北京 100044)
基金项目:国家自然科学基金(61671004)。
摘    要:研究具有紧支集且在支集内连续的二元函数沿上半圆曲线的Radon变换反演问题.基于对投影函数的Fourier变换,反演问题可以归结为具有弱奇性及震荡核的Abel积分方程的求解.我们证明了当圆曲线中心及半径在一定范围内变化时,在已知沿上半圆曲线的Radon变换情况下,这个积分方程的解具有唯一性,并给出了消除Abel积分方程...

关 键 词:Radon变换  Abel积分方程  弱奇性  多次加权
收稿时间:2020-01-17

The Numerical Solution of the Radon Transform Along the Circular Curve
WANG Lin, QU Gangrong. The Numerical Solution of the Radon Transform Along the Circular Curve[J]. CT Theory and Applications, 2020, 29(3): 329-336. DOI: 10.15953/j.1004-4140.2020.29.03.09
Authors:WANG Lin  QU Gangrong
Affiliation:School of Science, Beijing Jiaotong University, Beijing 100044, China)
Abstract:In this paper, we study the inverse problem of the Radon transform of a continuous bivariate function along the upper semicircle curve with a compact support set. Based on the Fourier transform of the projection function, the inverse problem can be deduced to the solution of the Abel integral equation with weak singularity and oscillatory kernel. We prove that when the center and radius of the upper semicircle curve change within a certain range, if the Radon transform along the upper semicircle is known, the solution of the Abel integral equation is unique, and we give a numerical method to eliminate this weak singularity. Considering projection data with noise, a stable numerical method for improving the condition number of the coefficient matrix with multiple weighting is proposed, and the validity of the proposed method is verified by numerical simulation. 
Keywords:Radon transform  Abel integral equation  weak singularity  multiple weighting
本文献已被 维普 等数据库收录!
点击此处可从《CT理论与应用研究》浏览原始摘要信息
点击此处可从《CT理论与应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号