首页 | 本学科首页   官方微博 | 高级检索  
     


Long-term glacier variations and the response to climate fluctuation in Qilian Mountains,China
Affiliation:1.College of Geography Science,Shanxi Normal University,Taiyuan 030000,China;2.Center for the Pan-Third Pole Environment,Lanzhou University,Lanzhou 730000,China;3.Key Laboratory of Tibetan Environment Changes and Land Surface Processes,Institute of Tibetan Plateau Research,CAS,Beijing 100101,China;4.State Key Laboratory of Cryospheric Sciences,Northwest Institute of Eco-environment and Resources,CAS,Lanzhou 730000,China
Abstract:Glaciers are considered to be'climate-sensitive indicators'and'solid reservoirs',and their changes significantly impact regional water security.The mass balance(MB)from 2011 to 2020 of the Qiyi Glacier in the northeast Tibetan Plateau is presented based on field observations.The glacier showed a persistent negative balance over 9 years of in-situ ob-servations,with a mean MB of-0.51 m w.e.yr-1.The distributed energy-mass balance model was used for glacier MB reconstruction from 1980 to 2020.The daily meteorological data used in the model were from HAR v2 reanalysis data,with automatic weather stations located in the middle and upper parts of the glacier used for deviation correction.The average MB over the past 40 years of the Qiyi Glacier was-0.36 m w.e.yr-1 with the mass losses since the beginning of the 21st century,being greater than those in the past.The glacier runoff shows a significant increasing trend,contributing-81%of the downstream river runoff.The albedo disparity indicates that the net shortwave radiation is much higher in the ablation zone than in the accumulation zone,accelerating ablation-area expansion and glacier mass de-pletion.The MB of the Qiyi Glacier is more sensitive to temperature and incoming shortwave radiation variation than precipitation.The MB presented a non-linear reaction to the temper-ature and incoming shortwave radiation.Under future climate warming,the Qiyi Glacier will be increasingly likely to deviate from the equilibrium state,thereby exacerbating regional water balance risks.It is found that the mass losses of eastern glaciers are higher than those of western glaciers,indicating significant spatial heterogeneity that may be attributable to the lower altitude and smaller area distribution of the eastern glaciers.
Keywords:glacier mass balance  energy-mass balance model  hydrology  Qilian Mountains
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号