首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Experimental Study on Water-rock Reactions with CO2 Fluid in a Deep Sandstone Formation under High Temperature and Pressure
作者姓名:LI Chengze  CHEN Guojun  LI Chao  TIAN Bing  SUN Rui  SU Long  LU Yingxin  WANG Lijuan
作者单位:1 Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China;2 Key Laboratory of Petroleum Resources Research,Gansu Province,Lanzhou 730000,China;3 University of Chinese Academy of Sciences,Beijing 100049,China;4 Inner Mongolia University of Science and Technology,Baotou,Inner Mongolia 014000,China;5 CNOOC Research Institute Co.,Ltd.,Beijing 100028,China
基金项目:supported financially by the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2016ZX05026-007-005)。
摘    要:Qiongdongnan Basin has a tectonic geological background of high temperature and high pressure in a deep reservoir setting,with mantle-derived CO2.A water-rock reaction device was used under high temperature and high pressure conditions,in conjunction with scanning electron microscope(SEM)observations,to carry out an experimental study of the diagenetic reaction between sandstone at depth and CO2-rich fluid,which is of great significance for revealing the dissolution of deep clastic rock reservoirs and the developmental mechanism of secondary pores,promoting deep oil and gas exploration.In this study,the experimental scheme of the water-rock reaction system was designed according to the parameters of the diagenetic background of the deep sandstone reservoir in the Qiongdongnan Basin.Three groups of single mineral samples were prepared in this experiment,including K-feldspar samples,albite samples and calcite samples.Using CO2 as a reaction solution,a series of diagenetic reaction simulation experiments were carried out in a semi-closed high temperature and high pressure simulation system.A field emission scanning electron microscope(SEM)was used to observe the microscopic appearance of the mineral samples after the water-rock reaction,the characteristics of dissolution under high temperature and high pressure,as well as the development of secondary pores.The experimental results showed that the CO2-rich fluid has an obvious dissolution effect on K-feldspar,albite and calcite under high temperature and high pressure.For the three minerals,the main temperature and pressure window for dissolution ranged from 150℃to 300℃and 45 MPa to 60 MPa.Scanning electron microscope observations revealed that the dissolution effect of K-feldspar is most obvious under conditions of 150℃and 45 MPa,in contrast to conditions of200℃and 50 MPa for albite and calcite.Through the comparative analysis of experimental conditions and procedures,a coupling effect occurred between the temperature and pressure change and the dissolution strength and calcite.Under high temperature and high pressure,pressure changed the solubility of CO2,furthermore,the dissolution effect and strength of the sandstone components were also affected.The experiment revealed that high temperature and high pressure conditions with CO2-rich fluid has a significant dissolution effect on aluminosilicate minerals and is conducive to the formation of secondary pores and effective reservoirs.Going forward with the above understanding has important implications for the promotion of deep oil and gas exploration.

关 键 词:deep  reservoir  high  temperature  and  pressure  CO2-rich  fluid  DISSOLUTION  Qiongdongnan  Basin
收稿时间:2020/5/22 0:00:00
修稿时间:2020/11/7 0:00:00

Experimental Study on Water‐rock Reactions with CO2 Fluid in a Deep Sandstone Formation under High Temperature and Pressure
Authors:LI Chengze  CHEN Guojun  LI Chao  TIAN Bing  SUN Rui  SU Long  LU Yingxin  WANG Lijuan
Abstract:Qiongdongnan Basin has a tectonic geological background of high temperature and high pressure in a deep reservoir setting,with mantle-derived CO2.A water-rock reaction device was used under high temperature and high pressure conditions,in conjunction with scanning electron microscope (SEM) observations,to carry out an experimental study of the diagenetic reaction between sandstone at depth and CO2-rich fluid,which is of great significance for revealing the dissolution of deep clastic rock reservoirs and the developmental mechanism of secondary pores,promoting deep oil and gas exploration.In this study,the experimental scheme of the water-rock reaction system was designed according to the parameters of the diagenetic background of the deep sandstone reservoir in the Qiongdongnan Basin.Three groups of single mineral samples were prepared in this experiment,including K-feldspar samples,albite samples and calcite samples.Using CO2 as a reaction solution,a series of diagenetic reaction simulation experiments were carried out in a semi-closed high temperature and high pressure simulation system.A field emission scanning electron microscope (SEM) was used to observe the microscopic appearance of the mineral samples after the water-rock reaction,the characteristics of dissolution under high temperature and high pressure,as well as the development of secondary pores.The experimental results showed that the CO2-rich fluid has an obvious dissolution effect on K-feldspar,albite and calcite under high temperature and high pressure.For the three minerals,the main temperature and pressure window for dissolution ranged from 150°C to 300°C and 45 MPa to 60 MPa.Scanning electron microscope observations revealed that the dissolution effect of K-feldspar is most obvious under conditions of 150°C and 45 MPa,in contrast to conditions of 200°C and 50 MPa for albite and calcite. Through the comparative analysis of experimental conditions and procedures,a coupling effect occurred between the temperature and pressure change and the dissolution strength of K-feldspar,albite and calcite.Under high temperature and high pressure,pressure changed the solubility of CO2, furthermore,the dissolution effect and strength of the sandstone components were also affected. The experiment revealed that high temperature and high pressure conditions with CO2-rich fluid has a significant dissolution effect on aluminosilicate minerals and is conducive to the formation of secondary pores and effective reservoirs.Going forward with the above understanding has important implications for the promotion of deep oil and gas exploration.
Keywords:deep reservoir  high temperature and pressure  CO2-rich fluid  dissolution  Qiongdongnan Basin
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《Acta Geologica Sinica》浏览原始摘要信息
点击此处可从《Acta Geologica Sinica》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号