首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydrogeochemical evaluation of fractured Limestone aquifer by applying a geochemical model in eastern Nile Valley,Egypt
Authors:Mohamed Gad  Ahmed Saad
Institution:1.Environmental Studies and Research Institute (ESRI),Sadat City University,El Sadat City,Egypt;2.Research Institute for Groundwater (RIGW),National Water Research Center,Giza,Egypt
Abstract:Rock water interactions play an important role in the flow of groundwater. Groundwater samples were collected from deep production wells with depths ranging from 120 to 230 m. Complete chemical analysis of 40 groundwater samples was collected from the fractured limestone aquifer including major cations (Na+, K+, Ca2+, Mg2+) and major anions (Cl?, SO4 2?, HCO3 ?, CO3 2?). A geochemical modeling (NETPATH Software) was applied for environmental simulate net geochemical mass-balance reactions between initial and final waters along a hydrologic flow path. This program simulates selected evolutionary waters for every possible combination of the plausible phases that account for the composition of a selected set of chemical constraints in the system. The groundwater of the Eocene aquifer mainly belongs to fairly fresh water with salinity contents ranging from 228 to 3595 ppm. The measured groundwater levels range between 8 and 25 m near the river Nile to the limestone plateau (eastwards). Consequently, groundwater flows from east to westward toward the river Nile. Groundwater aquifer in the study area is mainly composed of fractured limestone; the saturated states of the PCO2, calcite, aragonite, dolomite, siderite, gypsum, anhydrite, hematite, and goethite in addition to H2 gas were estimated. The undersaturated state of carbon dioxide reflects closed conditions and very low probability of recent recharge, and it reveals also the high tendency of water to precipitates carbonate species. Undersaturation by carbonate minerals is only restricted to some pockets distributed on the different places of the aquifer in the study area. The majority of groundwater samples of Eocene aquifer in the study area indicated that groundwater is not suitable for irrigation with treatment and requires good drainage.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号