首页 | 本学科首页   官方微博 | 高级检索  
     

高维数据非参数密度估计的低维流形代表点法
引用本文:王树良,李英,耿晶. 高维数据非参数密度估计的低维流形代表点法[J]. 武汉大学学报(信息科学版), 2021, 46(1): 65-70. DOI: 10.13203/j.whugis20160115
作者姓名:王树良  李英  耿晶
作者单位:1.北京理工大学计算机学院,北京,100081
基金项目:国家重点研发计划(2020YFC0832600);国家自然科学基金(62076027)。
摘    要:非参数核方法由于采用统一的度量标准,在大数据中利用高维样本数据学习时容易遭遇维数灾难问题.挖掘高维空间中的低维几何特性,有助于揭示数据分布的流形结构,进而利用有限样本的高维数据在低维子空间逼近数据的真实分布.基于此,提出一种新的高维数据密度非参数估计的低维流形代表点法,通过从高维空间中挖掘数据分布的几何结构来估计密度....

关 键 词:低维流形代表点法  核密度估计  非参数密度估计  交叉似然验证  高维数据
收稿时间:2019-05-25

A Low-Dimensional Manifold Representative Point Method to Estimate the Non-parametric Density for High-Dimensional Data
WANG Shuliang,LI Ying,GENG Jing. A Low-Dimensional Manifold Representative Point Method to Estimate the Non-parametric Density for High-Dimensional Data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 65-70. DOI: 10.13203/j.whugis20160115
Authors:WANG Shuliang  LI Ying  GENG Jing
Affiliation:1.School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China2.College of Computer Science and Technology, Qingdao University, Qingdao 266071, China
Abstract:When learning from high-dimensional sample data in big data,the non-parametric kernel method uses a unified metric,which is prone to dimensional disasters.If the low-dimensional geometric characteristics embedded in the high-dimensional space are found,it is helpful to reveal the manifold structure of the data distribution,and the high-dimensional data with limited samples can be used to approximate the true distribution of the data in the low-dimensional subspace.Based on this,this paper proposes a new low-dimensional manifold representative point method for non-parametric density estimation of high-dimensional data,which estimates the density by mining the geometric structure of the data distribution from the high-dimensional space.First,the local covariance matrix is calculated and the local data distribution is characterized by looking for points in the local area that can represent the main direction of the manifold structure.Then,each sample data point contribution is weight to density considering the different effects of the data points on or near the manifold structure.The experimental results show that,compared with the traditional kernel density estimation method and the manifold kernel density method,our proposed method can quickly and robustly perform density estimation and reflect the true distribution of data.
Keywords:low-dimensional manifold representative point method  kernel density estimation  non-parametric density estimation  cross-validated likelihood  high-dimensional data
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《武汉大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《武汉大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号