首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Supercooled water in austral summer in Prydz Bay, Antarctica
Authors:Jiuxin Shi  Yaoyao Cheng  Yutian Jiao  Jiaqiang Hou
Institution:(1) University Bremen, Bremen, Germany;(2) Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany;(3) NASA Goddard Institute for Space Studies, New York, USA;(4) Present address: University of Helsinki, Helsinki, Finland
Abstract:Supercooled water with temperatures below freezing point, was identified from hydrographic data obtained by Chinese and Australian expeditions to Prydz Bay, Antarctica, during the austral summer. The study shows that most supercooled waters occurred at depths of 63–271 m in the region north of the Amery Ice Shelf (AIS) front. The maximum supercooling was 0.16°C below the in-situ freezing point. In temperature and salinity ranges of ?2.14–1.96°C and 34.39–34.46, respectively, the water was colder and fresher than peripheral shelf water. The supercooled water had less variability in the vertical profiles compared to shelf water. Based on analysis of their thermohaline features and spatial distribution, as well as the circulation pattern in Prydz Bay, we conclude that these supercooled waters originated from a cavity beneath the AIS and resulted from upwelling just outside of the AIS front. Water emerging from the ice shelf cools to an extremely low temperature (about ?2.0°C) by additional cooling from the ice shelf, and becomes buoyant with the addition of melt water from the ice shelf base. When this water flows out of the ice shelf front, its upper boundary is removed, and thus it rises abruptly. Once the temperature of this water reaches below the freezing point, supercooling takes place. In summer, the seasonal pycnocline at ~100 m water depth acts as a barrier to upwelling and supercooling. The upwelling of ice shelf outflow water illuminates a unique mid-depth convection of the polar ocean.
Keywords:
本文献已被 CNKI 万方数据 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号