首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Long-Term Rainfall Variability in the Eastern Gangetic Plain in Relation to Global Temperature Change
Authors:Aradhana Yaduvanshi  Ashwini Ranade
Institution:1. Centre of Excellence in Climatology, Department of Physics, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India, 835215;2. Surface Water Hydrology Division, National Institute of Hydrology, Roorkee, Uttarakhand, India, 247667
Abstract:India’s annual weather cycle consists mainly of wet and dry periods with monsoonal rains being one of the significant wet periods that shows strong spatiotemporal variability. This study includes the climatological characteristics, fluctuation features, and periodic cycles of annual, seasonal, and monthly rainfall of seven river basins across the eastern Gangetic Plain (EGP) using the longest possible instrumental area-averaged monthly rainfall series (1829–2012). Understanding the relationships between these parameters and global tropospheric temperature changes and El Niño and La Niña climatic signals is also attempted.

Climatologically, mean annual rainfall in the EGP varies from 1070.5?mm in the Tons River basin to 1508.6?mm in the Subarnarekha River basin. The highest rainfall in the EGP occurs during monsoon (1188?mm). The annual rainfall in all river basins and monsoon rainfall in four river basins is normally distributed. Annual and monsoonal rainfall in the Brahmani and Son River basins show a significant decreasing long-term trend. Over the last 20 years, annual rainfall in all river basins and monsoonal rainfall in five river basins show a decreasing trend. The power spectra for all rainfall series are characterized by consistent significant wavelength peaks at 3–5 years, 10–20 years, 40 years, and more than 80 years. Short-term fluctuations with a period less than 10 years is the major contributor to total variance in annual and/or monsoon rainfall (77.6%), followed by decadal variations with a period of 10–30 years (13.1%) and a long-term trend with a period greater than 30 years (9.3%).Temperature and thickness gradients from the Tibet–Himalaya–Karakoram–Hindu Kush highlands to eight strong highs show a significant correlation with rainfall during the onset and withdrawal phases of summer monsoon in the EGP.
Keywords:rainfall variability  power spectra  global temperature change  river basin  climate change
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号