首页 | 本学科首页   官方微博 | 高级检索  
     

高阶Runge-Kutta-Li算法对二维线性平流方程的计算检验
引用本文:王鹏飞, 李建平, 黄刚. 高阶Runge-Kutta-Li算法对二维线性平流方程的计算检验[J]. 气候与环境研究, 2019, 24(4): 417-429. DOI: 10.3878/j.issn.1006-9585.2019.18169
作者姓名:王鹏飞  李建平  黄刚
作者单位:1.中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室,北京 100029;中国科学院大气物理研究所季风系统研究中心,北京 100190;2.中国海洋大学物理海洋教育部重点实验室,山东青岛266003;青岛海洋科学与技术国家实验室区域海洋动力学与数值模拟功能实验室,山东青岛266237;3.中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室,北京 100029
基金项目:国家重点研发计划2018YFA0605904,国家自然科学基金资助项目41530426、41831175、41425019,海洋局国际合作项目GASI-IPOVAI-03
摘    要:
利用高阶Li空间微分方案(Li, 2005),实现了时间积分为3~6阶Runge-Kutta-Li(RKL)格式的求解算法。二维线性平流方程的试验结果表明:在计算稳定的条件下,各阶算法的计算误差随时间的推移基本上是线性增加的。非转动背景场的平流算例中(高斯型的初值),高阶RKL算法可以取得较好的计算效果。与3、4、5、6阶RK算法配合的Li空间差分方案有效阶数可以达到5、7、9、10阶。RK 算法的阶数为5(6)阶时,总误差控制在10-7(10-8)以内。随RK阶数增加Li微分的有效阶数有增加趋势,且总误差逐渐减小。定常转速的背景场算例中(偏心的高斯型初值),当RK阶数为3时,最优空间差分阶数为10;相应的阶数为4、5、6时对应的空间最优阶为16,22,22,总计算误差可以控制在10-15~10-16
随着精度的提高,误差的绝对值减小很迅速,说明算法是非常有效的。对于圆锥型初值(定常转速的背景场),4、5、6阶RK算法和3阶算法的效果差不多。高阶算法对此类具有导数不连续点的算例,效果不如高斯初始场好,结果不能保持正定,有些地方误差出现下冲和上翘。随着空间差分精度的提高,非正定的解数量和数值减小,误差的绝对值减小,说明了算法在一定程度上是有效的,但并不适合追求极高的算法阶数。这与谱方法中的导数不连续问题有些相似,误差的产生主要源于导数的不连续性,差分类方法仅能获得与导数连续性阶数相当的算法精度。各种算例中,采用恰当的边界条件是必要的,例如旋转背景场算例,比较适合使用无穷远边界条件,否则会出现计算不稳定或无法将计算误差控制到较小的范围内。


关 键 词:Runge-Kutta-Li格式  高阶算法  二维平流方程
收稿时间:2018-12-26
本文献已被 CNKI 等数据库收录!
点击此处可从《气候与环境研究》浏览原始摘要信息
点击此处可从《气候与环境研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号