首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A heating process of Kuchi-erabu-jima volcano,Japan, as inferred from geomagnetic field variations and electrical structure
Authors:Wataru Kanda  Mitsuru Utsugi  Yoshikazu Tanaka  Takeshi Hashimoto  Ikuko Fujii  Toshiaki Hasenaka  Nobuaki Shigeno
Institution:1. Volcanic Risk Solutions, Institute of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand;2. GNS Sciences, Wairaki, New Zealand;1. Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Via Diocleziano 328, Napoli, Italy;2. Università degli Studi di Salerno, Dipartimento di Fisica “E.R. Caianiello”, Via Giovanni Paolo II 132, Fisciano, Salerno, Italy;3. Università degli Studi di Napoli Federico II, Dipartimento di Scienze Fisiche, Via Cintia, Napoli, Italy;4. Dipartimento di Scienze della Terra, Università di Perugia, Piazza dell''Università, 06123 Perugia, Italy;1. Geological Survey of Hokkaido, Environmental and Geological Research Department, Hokkaido Research Organization, N19 W12, Kita-ku, Sapporo 060-0819, Japan;2. Hokkaido Research Organization, N19 W11, Kita-ku, Sapporo 060-0819, Japan;1. Volcanic Risk Solutions, Institute of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand;2. School of Geography, Environment and Earth Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand;3. Japan Agency for Marine Earth Science and Technology (JAMSTEC) 2-15 Natsushima-cho Yokosuka, Kanagawa 237-0061, Japan;4. Geology Department, University of Otago, PO Box 56, Dunedin 9054, New Zealand
Abstract:Since August 2000, we have recorded the total intensity of the geomagnetic field at the summit area of Kuchi-erabu-jima volcano, where phreatic eruptions have repeatedly occurred. A time series analysis has shown that the variations in the geomagnetic field since 2001 have a strong relationship to an increase in volcanic activity. These variations indicate thermal demagnetization of the subsurface around the presently active crater. The demagnetization source for the early variations, until summer 2002, was estimated at about 200 m below sea level. For the variations since 2003, the source was modeled on the basis of the expansion of a uniformly magnetized ellipsoid. The modeling result showed that the source is located at 300 m above sea level beneath the crater. We carried out an audio-frequency magnetotelluric survey with the aim of obtaining a relation between the demagnetization source and the shallow structure of the volcano. A two-dimensional inversion applied to the data detected two good conductors, a shallow thin one which is restricted to a region around the summit area, while the other extends over the edifice at depths between 200 and 800 m. These conductors are regarded as clay-rich layers with low permeability, which were assumed to be generated through hydrothermal alteration. The demagnetization source for the early variations was possibly located at the lower part of the deep conductor and the source after 2003 lies between the two conductors, where groundwater is considered to be abundant. Based on these results, as well as on seismological, geodetic, and geochemical information, we propose a heating process of the Kuchi-erabu-jima volcano. In the initial stage, high-temperature volcanic gases supplied from the deep-seated magma remained temporarily at the level around the lower part of the less permeable deep conductor since the ascent path had not yet been established. Then, when the pathway developed as a result of repeated earthquakes, it became possible for a massive flux of volcanic gases to ascend through the conductor. The high temperature gases reached the aquifer located above the conductor and the heat was efficiently transported to the surrounding rocks through the groundwater. As a consequence, an abrupt increase of the gas flux and diffusion of the heat through the aquifer occurred and the high-temperature zone expanded. Since the high-temperature zone is located beneath another conductor, which acts as caprock, we assume that the energy of the phreatic explosion is accumulated there.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号