首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A regional and global analysis of carbon dioxide physiological forcing and its impact on climate
Authors:Timothy Andrews  Marie Doutriaux-Boucher  Olivier Boucher  Piers M Forster
Institution:1. Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
2. Met Office Hadley Centre, Exeter, UK
Abstract:An increase in atmospheric carbon dioxide concentration has both a radiative (greenhouse) effect and a physiological effect on climate. The physiological effect forces climate as plant stomata do not open as wide under enhanced CO2 levels and this alters the surface energy balance by reducing the evapotranspiration flux to the atmosphere, a process referred to as ‘carbon dioxide physiological forcing’. Here the climate impact of the carbon dioxide physiological forcing is isolated using an ensemble of twelve 5-year experiments with the Met Office Hadley Centre HadCM3LC fully coupled atmosphere–ocean model where atmospheric carbon dioxide levels are instantaneously quadrupled and thereafter held constant. Fast responses (within a few months) to carbon dioxide physiological forcing are analyzed at a global and regional scale. Results show a strong influence of the physiological forcing on the land surface energy budget, hydrological cycle and near surface climate. For example, global precipitation rate reduces by ~3% with significant decreases over most land-regions, mainly from reductions to convective rainfall. This fast hydrological response is still evident after 5 years of model integration. Decreased evapotranspiration over land also leads to land surface warming and a drying of near surface air, both of which lead to significant reductions in near surface relative humidity (~6%) and cloud fraction (~3%). Patterns of fast responses consistently show that results are largest in the Amazon and central African forest, and to a lesser extent in the boreal and temperate forest. Carbon dioxide physiological forcing could be a source of uncertainty in many model predicted quantities, such as climate sensitivity, transient climate response and the hydrological sensitivity. These results highlight the importance of including biological components of the Earth system in climate change studies.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号