首页 | 本学科首页   官方微博 | 高级检索  
     


An experimental investigation of volatile exsolution in evolving magma chambers
Authors:J. Stewart Turner   Herbert E. Huppert  R.Stephen J. Sparks
Abstract:
Previous laboratory experiments investigating the fluid dynamics of replenished magma chambers have been extended to model effects resulting from the release of gas. Turbulent transfer of heat between a layer of dense, hot and volatile-rich mafic magma overlying cooler more evolved magma can lead to crystallization and exsolution of volatiles in the lower layer. Small gas bubbles can cause the bulk density to decrease to that of the upper layer and thus produce sudden overturning and initiate mixing, followed by further exsolution of gas and explosive eruption. These processes have been modelled in the laboratory using a chemical reaction between sodium or potassium carbonate and nitric acid to release small bubbles of CO2. We have investigated both the initial overturning produced by gas release in the lower layer, and the subsequent evolution of gas due to intimate mixing of the two layers. The latter experiments, in which the reactants remained isolated in the two layers until overturning occurred, demonstrated unambiguously that the fluxes of chemical components across the interfaces between convecting layers are very slow compared to the flux of heat. This shows that the evolution of layers of magma of different origins and composition can take place nearly independently of each other. The magmas can coexist in the same stratified chamber, until their bulk densities become equal and they mix together. The processes illustrated in these experiments could occur in H2O-bearing magmas such as in the calcalkaline association and in CO2-bearing mafic magmas such as in silica undersaturated suites.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号