APPLICATION OF DEM GENERATION TECHNOLOGY FROM HIGH RESOLUTION SATELLITE IMAGE IN QUANTITATIVE ACTIVE TECTONICS STUDY: A CASE STUDY OF FAULT SCARPS IN THE SOUTHERN MARGIN OF KUMISHI BASIN |
| |
Authors: | WANG Si-yu AI Ming WU Chuan-yong LEI Qi-yun ZHANG Hui-ping REN Guang-xue LI Chuan-you REN Zhi-kun |
| |
Affiliation: | 1.Key Laboratory of Active Tectonics and Volcano, Institute of Geology, China Earthquake Administration, Beijing 100029, China;2.Earthquake Agency of Xinjiang Uygur Autonomous Region, Urumchi 830011, China;3.Earthquake Agency of Ningxia Hui Autonomous Region, Yinchuan 750001, China |
| |
Abstract: | Traditional method to generate Digital Elevation Model (DEM)through topographic map and topographic measurement has weak points such as low efficiency, long operating time and small range. The emergence of DEM-generation technology from high resolution satellite image provides a new method for rapid acquisition of large terrain and geomorphic data, which greatly improves the efficiency of data acquisition. This method costs lower compared with LiDAR (Light Detection and Ranging), has large coverage compared with SfM (Structure from Motion). However, there is still lack of report on whether the accuracy of DEM generated from stereo-imagery satisfies the quantitative research of active tectonics. This research is based on LPS (Leica Photogrammetry Suit)software platform, using Worldview-2 panchromatic stereo-imagery as data source, selecting Kumishi Basin in eastern Tianshan Mountains with little vegetation as study area. We generated 0.5m resolution DEM of 5-km swath along the newly discovered rupture zone at the south of Kumishi Basin, measured the height of fault scarps on different levels of alluvial fans based on the DEM, then compared with the scarp height measured by differential GPS survey in the field to analyze the accuracy of the extracted DEM. The results show that the elevation difference between the topographic profiles derived from the extracted DEM and surveyed by differential GPS ranges from -2.82 to 4.87m. The shape of the fault scarp can be finely depicted and the deviation is 0.30m after elevation correction. The accuracy of measuring the height of fault scarps can reach 0.22m, which meets the need of high-precision quantitative research of active tectonics. It provides great convenience for rapidly obtaining fine geometry, profiles morphology, vertical dislocations of fault and important reference for sites selection for trench excavation, slip rate, and samples. This method has broad prospects in the study of active tectonics. |
| |
Keywords: | stereo images DEM thrust faults active tectonics accuracy analysis |
|
|