首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The geochemistry of the volatile trace elements As, Cd, Ga, In and Sn in the Earth’s mantle: New evidence from in situ analyses of mantle xenoliths
Authors:G Witt-Eickschen  H Palme  HStC O’Neill
Institution:a Institut für Geologie und Mineralogie, Universität Köln, Zülpicher Str. 49B, D-50674 Köln, Germany
b Research School of Earth Sciences, ANU, Canberra, ACT 0200, Australia
Abstract:The abundances of 30 trace elements, including the volatile chalcophile/siderophile elements As, Cd, Ga, In and Sn were determined by laser ablation ICP-MS in minerals of 19 anhydrous and 5 hydrous spinel peridotite xenoliths from three continents. The majority of samples were fertile lherzolites with more than 5% clinopyroxene; several samples have major element compositions close to estimates of the primitive mantle. All samples have been previously analysed for bulk-rock major, minor and lithophile trace elements. They cover a wide range of equilibration temperatures from about 850 to 1250 °C and a pressure range from 0.8 to 3.0 GPa. A comparison of results from bulk-rock analyses with concentrations obtained from combining silicate and oxide mineral data with modal mineralogy, gave excellent agreement, with the exception of As. Arsenic is the only element analysed that has high concentrations in sulphides. For all other elements sulphides can be neglected as host phases in these mantle rocks. The major host phase for Cd, In and Sn is clinopyroxene and if present, amphibole. Cadmium and In appear to behave moderately incompatibly during mantle melting similar to Yb.The data yield new and more reliable mantle abundances for Cd (35 ± 7 ppb), In (18 ± 3 ppb) and Sn (91 ± 28 ppb). The In value is similar to the Mg and CI-normalized Zn abundance of the mantle, although In is cosmochemically more volatile than Zn. The high In content suggests a high content of volatile elements in general in proto-Earth material. The lower relative abundances of volatile chalcophile elements such as Cd, S, Se and Te might be explained by sulphide segregation during core formation. The very low relative abundances of volatile and highly incompatible lithophile elements such as Br, Cl and I, and also C, N and rare gases, imply loss during Earth accretion, arguably by collisional erosion from differentiated planetesimals and protoplanets.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号