首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Denitrification coupled to pyrite oxidation and changes in groundwater quality in a shallow sandy aquifer
Authors:Yan-Chun Zhang  Caroline P Slomp  Hilde F Passier
Institution:a Department of Earth Sciences-Geochemistry, Faculty of Geosciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands
b Deltares, TNO Geological Survey of the Netherlands, Princetonlaan 6, 3584 CB Utrecht, The Netherlands
c School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0340, USA
Abstract:This study focuses on denitrification in a sandy aquifer using geochemical analyses of both sediment and groundwater, combined with groundwater age dating (3H/3He). The study sites are located underneath cultivated fields and an adjacent forested area at Oostrum, The Netherlands. Shallow groundwater in the region has high nitrate concentrations (up to 8 mM) due to intense fertilizer application. Nitrate removal from the groundwater below cultivated fields correlates with sulfate production, and the release of dissolved Fe2+ and pyrite-associated trace metals (e.g. As, Ni, Co and Zn). These results, and the presence of pyrite in the sediment matrix within the nitrate removal zone, indicate that denitrification coupled to pyrite oxidation is a major process in the aquifer. Significant nitrate loss coupled to sulfate production is further confirmed by comparing historical estimates of regional sulfate and nitrate loadings to age-dated groundwater sulfate and nitrate concentrations, for the period 1950-2000. However, the observed increases in sulfate concentration are about 50% lower than would be expected from complete oxidation of pyrite to sulfate, possibly due to the accumulation of intermediate oxidation state sulfur compounds, such as elemental sulfur. Pollutant concentrations (NO3, Cl, As, Co and Ni) measured in the groundwater beneath the agricultural areas in 1996 and 2006 show systematic decreases most likely due to declining fertilizer use.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号