Abstract: | A numerical model based upon a second-order upwind cell-center finite volume method on unstructured triangular grids is developed for solving shallow water equations.The assumption of a small depth downstream instead of a dry bed situation changes the wave structure and the propagation speed of the front which leads to incorrect results.The use of Harten-Lax-vau Leer (HLL) allows handling of wet/dry treatment.By usage of the HLL approximate Riemann solver,also it make possible to handle discontinuous solutions.As the assumption of a very small depth downstream of the dam can change the nature of the dam break flow problem which leads to incorrect results,the HLL approximate Riemann solver is used for the computation of inviscid flux functions,which makes it possible to handle discontinuous solutions.A multidimensional slope-limiting technique is applied to achieve second-order spatial accuracy and to prevent spurious oscillations.To alleviate the problems associated with numerical instabilities due to small water depths near a wet/dry boundary,the friction source terms are treated in a fully implicit way.A third-order Runge-Kutta method is used for the time integration of semi-discrete equations.The developed numerical model has been applied to several test cases as well as to real flows.The tests are tested in two cases:oblique hydraulic jump and experimental dam break in converging-diverging flume.Numerical tests proved the robustness and accuracy of the model.The model has been applied for simulation of dam break analysis of Torogh in Irun.And finally the results have been used in preparing EAP (Emergency Action Plan). |