首页 | 本学科首页   官方微博 | 高级检索  
     

由锥形束投影监控物体体密度变化的快速方法
引用本文:史安生,吕东辉,张海燕,严壮志. 由锥形束投影监控物体体密度变化的快速方法[J]. CT理论与应用研究, 2008, 17(3): 7-12
作者姓名:史安生  吕东辉  张海燕  严壮志
作者单位:上海大学,通信与信息工程学院,上海,200072;上海大学,通信与信息工程学院,上海,200072;上海大学,通信与信息工程学院,上海,200072;上海大学,通信与信息工程学院,上海,200072
基金项目:国家自然科学基金,上海市教委资助项目
摘    要:
体密度是物体特征信息的一个重要组成部分,该信息的动态监控可用来快速判断物体体密度是否发生变化。目前最常用的体密度监控方法是基于图像重建的近似计算,该方法首先利用锥形束投影数据实现体积重建,然后对物体的密度函数积分求得物体的体密度。这种方法算法复杂度较高,很难实现对体密度的实时动态监控。本文提出一种直接基于锥形束投影的体密度快速监控方法,不需要图像重建。仿真实验结果表明,这种方法在动态监控物体体密度变化时,具有较高的实时性和精确性,可以满足实际的动态监控需求,因而在工业检测等领域具有一定的应用价值。

关 键 词:锥形束投影  3D Radon空间  体密度  动态监控

A Fast Monitoring Method of Volume Density Based on Cone-beam Projections
SHI An-sheng,LV Dong-hui,ZHANG Hai-yan,YAN Zhuang-zhi. A Fast Monitoring Method of Volume Density Based on Cone-beam Projections[J]. Computerized Tomography Theory and Applications, 2008, 17(3): 7-12
Authors:SHI An-sheng  LV Dong-hui  ZHANG Hai-yan  YAN Zhuang-zhi
Affiliation:SHI An-sheng, LV Dong-hui, ZHANG Hai-yan, YAN Zhuang-zhi (Shanghai University, Shanghai 200072, China)
Abstract:
Volume density is an important component of object feature information, which can be used to quickly determine whether the inside of object changes or not. At present, the most commonly used method of detecting volume density is based on image reconstruction. First, using cone-beam projection data, we can acquire volume reconstruction, then we can obtain the volume density through the integration of object density function. This method is complicated and time consuming. It is difficult to achieve the real-time dynamical monitoring of volume density. This paper proposes a fast monitoring method of volume density based on cone-beam projections without image reconstruction. Experimental results show that this method has high real-time performance and accuracy to meet the actual needs of the dynamical monitoring, and thus can be used in applications of industrial detection.
Keywords:cone-beam projections  3DRadon space  volume density  dynamical monitoring
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号