Origins of Xenolithic Eclogites and Pyroxenites from the Central Slave Craton, Canada |
| |
Authors: | Aulbach, Sonja Pearson, Norman J. O'Reilly, Suzanne Y. Doyle, Buddy J. |
| |
Affiliation: | 1Gemoc arc National Key Centre, Department of Earth and Planetary Sciences, Macquarie University, NSW 2109, Australia 2Lithosphere Services, 4009 Edinburgh Street, Burnaby, BC, Canada V5C 1R4 |
| |
Abstract: | Major- and trace-element and Sr–Nd–Hf isotopic compositionsof garnet and clinopyroxene in kimberlite-borne eclogite andpyroxenite xenoliths were used to establish their origins andevolution in the subcontinental lithospheric mantle beneaththe central Slave Craton, Canada. The majority of eclogitescan be assigned to three groups (high-Mg, high-Ca or low-Mgeclogites) that have distinct trace-element patterns. Althoughpost-formation metasomatism involving high field strength element(HFSE) and light rare earth element (LREE) addition has partiallyobscured the primary compositional features of the high-Mg andhigh-Ca eclogites, trace-element features, such as unfractionatedmiddle REE (MREE) to heavy REE (HREE) patterns suggestive ofgarnet-free residues and low Zr/Sm consistent with plagioclaseaccumulation, could indicate a subduction origin from a broadlygabbroic protolith. In this scenario, the low REE and smallpositive Eu anomalies of the high-Mg eclogites suggest moreprimitive, plagioclase-rich protoliths, whereas the high-Caeclogites are proposed to have more evolved protoliths withhigher (normative) clinopyroxene/plagioclase ratios plus trappedmelt, consistent with their lower Mg-numbers, higher REE andabsence of Eu anomalies. In contrast, the subchondritic Zr/Hfand positive slope in the HREE of the low-Mg eclogites are similarto Archaean second-stage melts and point to a previously depletedsource for their precursors. Low ratios of fluid-mobile to lessfluid-mobile elements and of LREE to HREE are consistent withdehydration and partial melt loss for some eclogites. The trace-elementcharacteristics of the different eclogite types translate intolower Nd for high-Mg eclogites than for low-Mg eclogites. Withinthe low-Mg group, samples that show evidence for metasomaticenrichment in LREE and HFSE have lower Nd and Hf than a samplethat was apparently not enriched, pointing to long-term evolutionat their respective parent–daughter ratios. Garnet andclinopyroxene in pyroxenites show different major-element relationshipsfrom those in eclogites, such as an opposite CaO–Na2Otrend and the presence of a CaO–Cr2O3 trend, independentof whether or not opx is part of the assemblage. Therefore,these two rock types are probably not related by fractionationprocesses. The presence of opx in about half of the samplesprecludes direct crystallization from eclogite-derived melts.They probably formed from hybridized melts that reacted withthe peridotitic mantle. KEY WORDS: eclogites; pyroxenite xenoliths; mantle xenoliths; eclogite trace elements; eclogite Sr isotopes; eclogite Hf isotopes; eclogite Nd isotopes |
| |
Keywords: | : eclogites pyroxenite xenoliths mantle xenoliths eclogite trace elements eclogite Sr isotopes eclogite Hf isotopes eclogite Nd isotopes |
本文献已被 Oxford 等数据库收录! |
|