首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A New Integrated Weighted Model in SNOW-V10: Verification of Continuous Variables
Authors:Laura X Huang  George A Isaac  Grant Sheng
Institution:1. Cloud Physics and Severe Weather Research Section, Science and Technology Branch, Environment Canada, 4905 Dufferin Street, Toronto, ON, M3H 5T4, Canada
2. Faculty of Environmental Studies, York University, Toronto, ON, M3J 1P3, Canada
Abstract:This paper presents the verification results of nowcasts of four continuous variables generated from an integrated weighted model and underlying Numerical Weather Prediction (NWP) models. Real-time monitoring of fast changing weather conditions and the provision of short term forecasts, or nowcasts, in complex terrain within coastal regions is challenging to do with sufficient accuracy. A recently developed weighting, evaluation, bias correction and integration system was used in the Science of Nowcasting Olympic Weather for Vancouver 2010 project to generate integrated weighted forecasts (INTW) out to 6 h. INTW forecasts were generated with in situ observation data and background gridded forecasting data from Canadian high-resolution deterministic NWP system with three nested grids at 15-, 2.5- and 1-km horizontal grid-spacing configurations. In this paper, the four variables of temperature, relative humidity, wind speed and wind gust are treated as continuous variables for verifying the INTW forecasts. Fifteen sites were selected for the comparison of the model performances. The results of the study show that integrating surface observation data with the NWP forecasts produce better statistical scores than using either the NWP forecasts or an objective analysis of observed data alone. Overall, integrated observation and NWP forecasts improved forecast accuracy for the four continuous variables. The mean absolute errors from the INTW forecasts for the entire test period (12 February to 21 March 2010) are smaller than those from NWP forecasts with three configurations. The INTW is the best and most consistent performer among all models regardless of location and variable analyzed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号