摘 要: | 水下图像增强因其在海洋勘测和水下机器人中的重要意义而备受关注。在过去的几年中,已经提出了许多水下图像增强算法。已有的深度学习方法由于忽略水下图像的预处理过程和对红色通道信息的增强或者弱化了这个过程,导致增强结果并不显著,其往往只适应特定的场景,缺乏泛化能力。为此,基于卷积神经网络建立了一种全新的水下图像增强算法,为了充分利用特征图的通道信息,在相同维度的特征图之间采用不同尺寸的卷积核获取更多通道数目的特征。然后,基于红色通道构建了注意力机制,以加强对于图像中容易丢失信息的红色通道的特征提取。最后,在EUVP,UFO120数据集做了消融实验,证明了红色通道注意力机制的有效性。通过对对比实验的增强结果进行各项指标分析,证明增强结果有着更高的结构相似性和峰值信噪比,并且在无参考指标方面有着更高的颜色平衡、清晰度以及对比度,综合性能优于以往的方法。
|