首页 | 本学科首页   官方微博 | 高级检索  
     

利用BP神经网络进行水库滑坡变形预测
引用本文:易庆林,曾怀恩,黄海峰. 利用BP神经网络进行水库滑坡变形预测[J]. 水文地质工程地质, 2013, 40(1): 124-128
作者姓名:易庆林  曾怀恩  黄海峰
作者单位:三峡大学三峡库区地质灾害教育部重点实验室,宜昌 443002;三峡大学湖北省地质灾害防治工程技术研究中心,宜昌 443002
基金项目:国家自然科学基金项目(41104009);地球空间环境与大地测量教育部重点实验室开放基金资助项目(11-01-04);精密工程与工业测量国家测绘地理信息局重点实验室开放基金项目(PF2011-4)
摘    要:
滑坡变形监测与预测是滑坡预警预报中一种非常重要的途径。文章首先简单介绍了神经网络的基本原理和学习算法,然后利用某水库滑坡24期的GPS地表位移监测数据及其诱发因素即水库水位、降雨等资料,采用BP神经网络模型对该水库滑坡变形进行建模,最后将6期水库水位、降雨等资料输入模型进行滑坡变形预测,结果表明预测结果与实测数据符合性好,总体上能较好反映变形趋势。

关 键 词:滑坡   变形预测   BP神经网络   水库水位   降雨

Reservoir landslide deformation forecast using BP neural network
YI Qing-lin,ZENG Huai-en,HUANG Hai-feng. Reservoir landslide deformation forecast using BP neural network[J]. Hydrogeology and Engineering Geology, 2013, 40(1): 124-128
Authors:YI Qing-lin  ZENG Huai-en  HUANG Hai-feng
Affiliation:Key Laboratory of Geological Hazards on Three Gorges Reservoir Area, Ministry of Education, China Three Gorges University, Yichang 443002,China; Engineering Research Center for Geological Hazards Prevention and Cure, Hubei province, China Three Gorges University, Yichang 443002,China
Abstract:
Landslides deformation monitoring and forecast is a very important approach to early landslide warning and forecast. The basic principle and algorithm of BP neural network are briefly introduced in this paper. With 24 sets of GPS displacement monitoring data and the corresponding cause information, i.e. reservoir level and rainfall of a reservoir landslides, the landslide deformation model is constructed using BP neural network. The late 6 sets of cause information are put into the deformation model and the forecasted deformation is obtained. The results show that the forecasted deformation has a good fit performance with the fatual surveying deformation and can reflect the overall deformation trend. The results have referrence value for landslide deformation forecast.
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《水文地质工程地质》浏览原始摘要信息
点击此处可从《水文地质工程地质》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号