首页 | 本学科首页   官方微博 | 高级检索  
     

改进蜂群算法及其在面波频散曲线反演中的应用
引用本文:于东凯, 宋先海, 江东威, 张学强, 赵素涛, 赵培强, 蔡伟, 袁士川. 2018. 改进蜂群算法及其在面波频散曲线反演中的应用. 地球物理学报, 61(4): 1482-1495, doi: 10.6038/cjg2018L0424
作者姓名:于东凯  宋先海  江东威  张学强  赵素涛  赵培强  蔡伟  袁士川
作者单位:1. 中国地质大学 地球物理与空间信息学院, 武汉 430074; 2. 中国地质大学 湖北省地球内部多尺度成像重点实验室, 武汉 430074
基金项目:国家自然科学基金项目(41574114,41174113)资助.
摘    要:

应用改进蜂群算法反演面波频散曲线以获得近地表横波速度剖面.蜂群算法属于群智能算法中的一种,灵感来源于蜜蜂群体特定的觅食行为,在该算法的基础上结合粒子群算法中的全局最优解引导思想,同时引入遗传算法中交叉运算操作,即采用基于交叉操作的全局人工蜂群算法对面波频散曲线进行反演研究.改进蜂群算法在继承传统算法精于探索特性的同时,针对其疏于开发的缺陷着重加强了算法对全局的探索能力.使用理论和实测瑞雷波数据,本文研究了改进蜂群算法在推导近地表横波速度分布的有效性和适用性.在反演中,目标函数的收敛性好,改进算法在迭代的过程中能够快速收敛到全局最优;模型参数的概率分布高,即在寻找到全局最优解的同时,能够确保解中每个参数同时达到最优,保证了反演的结果可靠度,使其能有效地应用于瑞雷波频散曲线的反演和解释中.



关 键 词:瑞雷波   频散曲线   非线性反演   粒子群算法   遗传算法   改进蜂群算法
收稿时间:2017-07-09
修稿时间:2017-12-04

Improvement of Artificial Bee Colony and its application in Rayleigh wave inversion
YU DongKai, SONG XianHai, JIANG DongWei, ZHANG XueQiang, ZHAO SuTao, ZHAO PeiQiang, CAI Wei, YUAN ShiChuan. 2018. Improvement of Artificial Bee Colony and its application in Rayleigh wave inversion. Chinese Journal of Geophysics (in Chinese), 61(4): 1482-1495, doi: 10.6038/cjg2018L0424
Authors:YU DongKai  SONG XianHai  JIANG DongWei  ZHANG XueQiang  ZHAO SuTao  ZHAO PeiQiang  CAI Wei  YUAN ShiChuan
Affiliation:1. Institute of Geophysics & Geomatics, China University of Geosciences, Wuhan 430074, China; 2. Hubei Subsurface Multi-scale Imaging Lab(SMIL), China University of Geosciences, Wuhan 430074, China
Abstract:
The improved artificial bee colony algorithm is applied to get surface wave phase velocities. The ABC algorithm,one of swarm intelligence-based algorithms,was inspired from the particular intelligent foraging behavior of honeybee swarm in nature. On the basis of the ABC algorithm,this paper combines with the idea of global optimal solution in particle swarm optimization algorithm and the cross-operation strategy in genetic algorithm.The improved algorithm on the basis of inheriting traditional ABC algorithm,can also improve the exploration ability. Using theoretical and measured data,this paper increased the effectiveness and applicability of the improved ABC algorithm in deducing an S-wave velocity profile in near-surface applications. In inversion,the objective function can rapidly converge to the global optimization solution. The wide probability distribution of model parameters means that it is able to find the global optimal solution and at the same time to ensure each parameter in the solution to achieve the best. It guaranteed the improved ABC algorithm is suitable for the inversion and interpretation of Rayleigh wave dispersion curve.
Keywords:Rayleigh wave  Dispersion curve  Nonlinear inversion  Particle swarm optimization  Genetic algorithm  Improved artificial bee colony algorithm
本文献已被 CNKI 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号