首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Deepwater Turbidite Lobe Deposits: A Review of the Research Frontiers
作者姓名:ZHANG Leifu  PAN Mao  WANG Hongliang
作者单位:1 School of Earth and Space Sciences, Peking University, Beijing 100871, China,1 School of Earth and Space Sciences, Peking University, Beijing 100871, China,2 School of Energy Resources, China University of Geosciences, Beijing 100083, China
摘    要:Deepwater/deep-marine turbidite lobes are the most distal part of a siliciclastic depositional system and hold the largest sediment accumulation on the seafloor. As many giant hydrocarbon provinces have been discovered within deepwater lobe deposits, they represent one of the most promising exploration targets for hydrocarbon industry. Deepwater exploration is characterized by high cost, high risk but insufficient data because of the deep/ultra–deepwater depth. A thorough understanding of the deepwater turbidite lobe architecture, hierarchy, stacking pattern and internal facies distribution is thus vital. Recently, detailed outcrop characterizations and high–resolution seismic studies have both revealed that the deepwater lobe deposits are characterized into four–fold hierarchical arrangements from "beds", to "lobe elements", to "lobes" and to "lobe complex". Quantitative compilations have shown that hierarchical components of lobe deposits have similar length to width ratios but different width to thickness ratios depending on different turbidite systems. At all hierarchical scales, sand–prone hierarchical lobe units are always separated by mud–prone bounding units except when the bounding units are eroded by their overlying lobe units thus giving rise to vertical amalgamation and connectivity. Amalgamations often occur at more proximal regions suggesting high flow energy. A mixed flow behavior may occur towards more distal regions, resulting in deposition of "hybrid event beds". These synthesized findings could(1) help understand the lobe reservoir distribution and compartmentalization therefore benefit the exploration and development of turbidite lobes within the deep marine basins(e.g. South China Sea) and(2) provide rules and quantitative constraints on reservoir modeling. In addition, the findings associated with deepwater turbidite lobes might be a good starting point to understand the sedimentology, architecture and hierarchy of turbidites in deep lacustrine environment.

关 键 词:deepwater    turbidite  lobes    architecture    hierarchy    quantitative  characterization    hybrid  event  beds
收稿时间:2015/12/21 0:00:00
修稿时间:2025/7/16 0:00:00

Deepwater Turbidite Lobe Deposits: A Review of the Research Frontiers
Authors:ZHANG Leifu  PAN Mao and WANG Hongliang
Institution:1. School of Earth and Space Sciences, Peking University, Beijing 100871, China;2. School of Energy Resources, China University of Geosciences, Beijing 100083, China
Abstract:Deepwater/deep‐marine turbidite lobes are the most distal part of a siliciclastic depositional system and hold the largest sediment accumulation on the seafloor. As many giant hydrocarbon provinces have been discovered within deepwater lobe deposits, they represent one of the most promising exploration targets for hydrocarbon industry. Deepwater exploration is characterized by high cost, high risk but insufficient data because of the deep/ultra–deepwater depth. A thorough understanding of the deepwater turbidite lobe architecture, hierarchy, stacking pattern and internal facies distribution is thus vital. Recently, detailed outcrop characterizations and high–resolution seismic studies have both revealed that the deepwater lobe deposits are characterized into four–fold hierarchical arrangements from “beds”, to “lobe elements”, to “lobes” and to “lobe complex”. Quantitative compilations have shown that hierarchical components of lobe deposits have similar length to width ratios but different width to thickness ratios depending on different turbidite systems. At all hierarchical scales, sand–prone hierarchical lobe units are always separated by mud–prone bounding units except when the bounding units are eroded by their overlying lobe units thus giving rise to vertical amalgamation and connectivity. Amalgamations often occur at more proximal regions suggesting high flow energy. A mixed flow behavior may occur towards more distal regions, resulting in deposition of “hybrid event beds”. These synthesized findings could (1) help understand the lobe reservoir distribution and compartmentalization therefore benefit the exploration and development of turbidite lobes within the deep marine basins (e.g. South China Sea) and (2) provide rules and quantitative constraints on reservoir modeling. In addition, the findings associated with deepwater turbidite lobes might be a good starting point to understand the sedimentology, architecture and hierarchy of turbidites in deep lacustrine environment.
Keywords:deepwater  turbidite lobes  architecture  hierarchy  quantitative characterization  hybrid event beds
本文献已被 CNKI 等数据库收录!
点击此处可从《Acta Geologica Sinica》浏览原始摘要信息
点击此处可从《Acta Geologica Sinica》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号