首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Preferential water and solute transport through sandy soil containing artificial macropores
Authors:B B Zhou  Y Li  Q J Wang  Y L Jiang  S Li
Institution:1. Institute of Water Resources and Hydro-electric Engineering, Xi’an University of Technology, Xi’an, 710048, People’s Republic of China
2. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Northwest A&F University, Yangling, 712100, Shaanxi, People’s Republic of China
Abstract:Macropores resulting from soil pedogenesis and biological activity play important roles in soil water and chemical transport. Numerous studies have examined individual macropores and the effects of their size on solute transport, but few have assessed the effects of macropore continuity and of neighboring macropores. This paper describes a laboratory investigation of the effects of macropores, with varying degrees and types of continuity, on the transport and distribution of solutes in a sandy soil from the northern Loess Plateau, China. Breakthrough curves were obtained from 60 cm tall, 2-D columns containing standardized artificial macropores using an input solution of 1,190 mg/L KBr and 100 mg/L FD&C Blue #1 under a constant hydraulic head of 8 cm. The types of macropore were: open at both the surface and bottom of the soil column (O–O); open at the surface, closed at the bottom (O–C); and closed at the surface, open at the bottom (C–O). Columns with no macropores served as a control. In the O–O columns the solution reached the bottom 10–50 times faster than in any other treatment, bypassing most of the soil matrix. The presence of an O–C macropore resulted in weak retardation and much deeper penetration of the bromide and FD&C Blue #1 solution than in the control columns. However, the C–O macropore had little effect on either breakthrough curves or solute distributions. In further experiments that considered neighboring macropores effects, an inclined macropore strongly affected solute concentrations in the profile around a nearby vertical macropore. It was concluded that the length, type and position of single macropores, and the presence of neighboring macropores, all affect soil water flow and solute infiltration parameters in a sandy loam soil.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号