首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical modeling of a long-term in situ chemical osmosis experiment in the Pierre Shale,South Dakota
Authors:A.M. Garavito  H. Kooi  C.E. Neuzil
Affiliation:1. Department of Hydrology and Geo-environmental Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands;2. US Geological Survey, 431 National Center, Reston, VA 20192, USA
Abstract:
We have numerically modeled evolving fluid pressures and concentrations from a nine-year in situ osmosis experiment in the Pierre Shale, South Dakota. These data were obtained and recently interpreted by one of us (C.E.N.) as indicating a potentially significant role for chemical osmosis in media like the Pierre Shale. That analysis considered only the final pressure differentials among boreholes that were assumed to represent osmotic equilibrium. For this study, the system evolution was modeled using a recently developed transient model for membrane transport. The model simulates hydraulically and chemically driven fluid and solute transport. The results yield an estimate of the thickness of the water film between the clay platelets b of 40 Å, which corresponds to an osmotic efficiency σ of 0.21 for the ambient pore water salinity of 3.5 g/l TDS. These values largely confirm the results of the earlier equilibrium analysis. However, the new model analysis provides additional constraints suggesting that intrinsic permeability k = 1.4 × 10−19 m2, specific storage Ss = 1.7 × 10−5 m−1, and diffusion coefficient D* = 6 × 10−11 m2/s. The k value is larger than certain independent estimates which range from 10−21 to 10−20; it may indicate opening of microcracks during the experiments. The fact that the complex transient pressure and concentration behavior for the individual wells could be reproduced quite accurately, and the inferred parameter values appear to be realistic for the Pierre Shale, suggests that the new model is a useful tool for modeling transient coupled flows in groundwater systems.
Keywords:Osmotic flow   Coupled flow modeling   Semi-permeable clay membranes   Osmotic efficiency
本文献已被 ScienceDirect 等数据库收录!
相似文献(共20条):
[1]、Stuart J. Cravens,Lon C. Ruedisili.Water Movement in Till of East-Central South Dakota[J].Ground water,1987,25(5):555-561.
[2]、G.B. Engelen.Runoff processes and slope development in Badlands National Monument,South Dakota[J].Journal of Hydrology,1973,18(1):55-79.
[3]、Numerical modeling of sedimentation control scenarios in the approach channel of the Nakdong River Estuary Barrage,South Korea[J].国际泥沙研究
[4]、Zeinab Khorrami,Mohammad Ali Banihashemi.Numerical simulation of sedimentation process in reservoirs and development of a non-coupled algorithm to improve long-term modeling[J].国际泥沙研究,2019,34(3):279-294.
[5]、V. P. Shcherbakov,N. K. Sycheva.Numerical modeling of magnetization of a precipitating rock suspension[J].Izvestiya Physics of the Solid Earth,2009,45(1):47-56.
[6]、Jaroslav Svoboda.Numerical modeling of the atmospheric boundary layer over a hilly landscape[J].Studia Geophysica et Geodaetica,1990,34(2):167-184.
[7]、Numerical modeling of the Amazon River plume[J].Continental Shelf Research
[8]、Jagdish Krishnaswamy, Michael Lavine, Daniel D. Richter,Karl Korfmacher,.Dynamic modeling of long-term sedimentation in the Yadkin River basin[J].Advances in water resources,2000,23(8):2078.
[9]、A. V. Frolov.Dynamic-stochastic modeling of long-term variations in river runoff[J].Water Resources,2006,33(5):483-493.
[10]、A. Aitsam,H.P. Hansen,J. Elken,M. Kahru,J. Laanemets,M. Pajuste,J. Pavelson,L. Talpsepp.Physical and chemical variability of the Baltic Sea: a joint experiment in the Gotland Basin[J].Continental Shelf Research,1984,3(3):291-310.
[11]、Aizhong Ding,Lirong Cheng,Puxin Liu,Philip J. Carpenter,Yanguo Teng.Plant Response to Metal Contamination at an Oil Shale Tailing Site in Maoming, South China[J].Ground Water Monitoring & Remediation,2007,27(3):111-117.
[12]、Gerhard Gayer,Stephan Dick,Andrey Pleskachevsky,Wolfgang Rosenthal.Numerical modeling of suspended matter transport in the North Sea[J].Ocean Dynamics,2006,56(1):62-77.
[13]、C. Stumpp, G. Nützmann, S. Maciejewski,P. Maloszewski.A comparative modeling study of a dual tracer experiment in a large lysimeter under atmospheric conditions[J].Journal of Hydrology,2009,375(3-4):566-577.
[14]、Peng HAN,Jin-Ren NI,Ke-Bin HOU,Chi-Yuan MIAO,and Tian-Hong LI,Assoc.Prof,Prof.,Master,Dr.,Assoc.Prof..Numerical modeling of gravitational erosion in rill systems[J].国际泥沙研究,2011(4):403-415.
[15]、Fish biological effect monitoring of chemical stressors using a generalized linear model in South Sea,Korea[J].Marine pollution bulletin
[16]、程冰洁,李小凡,徐天吉.含流体裂缝介质中地震波场数值模拟[J].地球物理学进展,2007,22(5):1370-1374.
[17]、Mohammad Hassan Ranjbar,Nasser Hadjizadeh Zaker.Numerical modeling of general circulation,thermohaline structure,and residence time in Gorgan Bay,Iran[J].Ocean Dynamics,2018,68(1):35-46.
[18]、Zhao Cheng,Boris Jeremić.Numerical modeling and simulation of pile in liquefiable soil[J].Soil Dynamics and Earthquake Engineering,2009,29(11-12):1405-1416.
[19]、,,,,,,,,,,,,,,,,,,,,,,,Dong-feng XIE,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,Shu GAO,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,Zheng-bing WANG,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,Cun-hong PAN.Numerical modeling of tidal currents, sediment transport and morphological evolution in Hangzhou Bay, China[J].国际泥沙研究,2013,28(3):316-328.
[20]、Yovani Montaño,Noel Carbajal.Numerical experiments on the long-term morphodynamics of the Colorado River Delta[J].Ocean Dynamics,2008,58(1):19-29.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号