首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Transfer and transport of phosphorus and silica in the turbidity maximum zone of the Changjiang estuary
Authors:Zhiliang Shen  Shuqing Zhou  Shaofeng Pei
Institution:1. Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, Shandong 266071, PR China;2. Life Sciences and Technique College, Shanghai Fishery University, 334 Jungong Road, Shanghai 200090, PR China
Abstract:The concentration of suspended particulate matter (SPM), sedimentation flux, and various forms of phosphorus and silica in turbidity maximum zone (TMZ) in the Changjiang (Yangtze) estuary was studied. Based on the budget of P and Si, their mass balances in the TMZ were calculated. Results show that the variation in concentration of dissolved inorganic silicon (DISi) was mainly controlled by seawater dilution, while that of dissolved inorganic phosphorus (DIP) was considerably affected by the buffering of suspended matter and sediment. Our experiments showed that the sedimentation fluxes of SPM and particulate inorganic phosphorus (PIP), total particulate phosphorus (TPP), particulate inorganic silicon (PISi), and biological silicon (BSi) in the TMZ were 238.4 g m−2 d−1 and 28.3, 43.1, 79.0, 63.0 mg m−2 d−1, respectively. In addition, a simple method to estimate the ratio of resuspension of sediment in the TMZ was established, with which the rate in surface and bottom waters of the TMZ accounted for 55.7 and 66.1% of the total SPM, respectively, indicating that the sediment resuspension in the TMZ influenced significantly the mass balances of P and Si. Particulate adsorbed P (60.8%) and 35.5% of total particulate P discharged from the river were filtered and then deposited in the TMZ. The input flux of PIP from the river mouth was 55.9% of that of DIP, being important as biologically available P, while that of PISi was only 3.5% of DISi, showing that particulate adsorbed Si was much less important than particulate adsorbed P.
Keywords:phosphorus  silica  suspended particulate matter  transport  turbidity maximum zone  China  Changjiang (Yangtze) estuary
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号