首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Parameterization of the Melting Regime of the Shallow Upper Mantle and the Effects of Variable Lithospheric Stretching on Mantle Modal Stratification and Trace-Element Concentrations in Magmas
Authors:KOSTOPOULOS  DIMITRIS K; JAMES  SIMON D
Institution:1Department of Geological Sciences, Science Laboratories, University of Durham, South Road, Durham DH1 3LE, UK
2Shell Internationale Petroleum Maatschappij B.V., P.O. Box 162, The Hague, The Netherlands
Abstract:Parameterization of melting phenomena in the upper mantle hasprimarily focused on two basic themes, namely the physical andchemical processes that govern partial melting. Parameterizationof physical processes mainly refers to establishing relationshipsbetween parameters such as the temperature, pressure, matrixand melt flow geometry, lithospheric stretching, and volumeof magma. By contrast, parameterization of chemical processeslargely implies unravelling the relationships between type anddegree of melting, and source and melt composition. Few attemptshave been made, however, to interrelate the two processes. Thepresent work is an effort to provide a link between physicaland chemical parameters associated with mantle melting and toallow in-depth modelling of partial melting processes in upwellingasthenosphere in a rigorous yet simplified manner. Several correlationsamong the most important physical parameters (e.g., equilibrationand extrusion temperature and pressure of magma, melt fractionand thickness, stretching factor, etc.) are explored. On thisbasis, a model for the compositional stratification of the lithosphereis proposed, and its bearing on the nature of intra-oceanicarc magmatism is emphasized. Trends of melting residues in termsof modal olivine and clinopyroxene are calculated for a widerange of possible potential temperatures that may be appliedto xenolith or abyssal peridotite suites to constrain furthertheir original depth of upwelling. Dry solidus equations fordepleted peridotite compositions are also derived that may beused to infer the effects of volatiles on the melting of refractorysupra-subduction zone mantle. The sensitivity of certain elementsto temperature variations during melting in a column of ascendingmantle is highlighted using Ni as an example, and the dangersof using single-value distribution coefficients to predict concentrationsof transition metals in magmas are emphasized. MORB-normalizedmulti-element profiles calculated using a variety of sources,mantle potential temperatures, and stretching factors are presented,and the differences between instantaneous and pooled melts arediscussed. A technique to calculate mineral proportions duringtransformation of garnet lherzolite to spinel lherzolite, togetherwith estimates of the modal composition of fertile spinel andgarnet lherzolite are included. Selected trace-element abundancesin various sources bulk silicate Earth, depleted MORB (mid-oceanridge basalt) mantle, N-MORB) and distribution coefficientsfor common rock-forming minerals are also tabulated.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号