首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cataclastic deformation of geological materials in matrices of differing composition: I. Pebbles and conglomerates
Authors:NC Gay  JC Jaeger
Institution:Australian National University, Canberra A.C.T.Australia
Abstract:Spheres and clylinders of various rock types were embedded in a matrix of crushed rock and the combined samples were then deformed by applying uniaxial compressive loads of up to 4.5 MN. Under these conditions, large confining pressures are built up in the centre of the samples; thus the granular matrix is compressed into relatively hard rock and the objects experience flattening and stretching strains of up to 30%. The rock types used for the objects ranged from weak sandstone and shale to very strong quartzite; matrix materials were crushed adamellite, marble and a marble—salt mixture. The experiments were designed to investigate the relative deformation of the objects and the composite samples and, in particular, the effect of the ductility contrasts (or complete differences) between the objects and the matrix.Spheres and cylinders with a length/diameter ratio of unity are called “pebbles” in the paper. They experience a homogeneous flattening during compression and the ductility contrast controls the load at which yielding occurs and the relative rates at which a pebble and the surrounding matrix deform. The changes in shape of pebble and sample are related linearly and the slope of the straight line graph gives a quantitative estimate of the ductility contrast ; in this way a table of ductility contrasts for the various rock types has been constructed and the relative responses of different pebbles in a granular matrix are nicely illustrated in an artificial deformed conglomerate.Cataclasis is the dominant mode of deformation and much of the large finite strain induced into the objects occurs at surprisingly low applied loads. This suggests that deformed pebbles in natural rock need not necessarily have deformed as a result of tectonic pressures but could have changed shape during diagenesis of the host rocks.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号