Convection in a rotating magnetic system and Taylor's constraint |
| |
Authors: | P. H. Skinner A. M. Soward |
| |
Affiliation: | School of Mathematics, The University , Newcastle upon Tyne, NE1 7RU, UK |
| |
Abstract: | Abstract A system is considered in which electrically conducting fluid is contained between two rigid horizontal planes and bounded laterally by a circular cylinder. The fluid is permeated by a strong azimuthal magnetic field. The strength of the field increases linearly with distance from the vertical axis of the cylinder, about which the entire system rotates rapidly. An unstable temperature gradient is maintained by heating the fluid from below and cooling from above. When viscosity and inertia are neglected, an arbitrary geostrophic velocity, which is aligned with the applied azimuthal magnetic field and independent of the axial coordinate, can be superimposed on the basic axisymmetric state. In this inviscid limit, the geostrophic velocity which occurs at the onset of convection is such that the net torque on geostrophic cylinders vanishes (Taylor's condition). The mathematical problem which describes the ensuing marginal convection is nonlinear, and was discussed previously for the planar case by Soward (1986). Here new features are isolated which result from the cylindrical geometry. New asymptotic solutions are derived valid when Taylor's condition is relaxed to include viscous effects. |
| |
Keywords: | Convection geodynamo magnetic field rotation Taylor's condition |
|
|