Mode coupling analysis and differential rotation in a flow driven by a precessing cylindrical container |
| |
Authors: | Thierry Lehner Waleed Mouhali Jacques Leorat Alex Mahalov |
| |
Affiliation: | 1. Luth, CNRS, UMR8102 , Observatoire de Paris-Meudon , 92195 Meudon, France thierry.lehner@obspm.fr;3. Luth, CNRS, UMR8102 , Observatoire de Paris-Meudon , 92195 Meudon, France;4. Center for Environmental Fluid Dynamics , Arizona State University Tempe , Arizona, AZ85287-1804, USA |
| |
Abstract: | We present a theoretical weakly nonlinear analysis of the dynamics of an inviscid flow submitted to both rotation and precession of an unbounded cylindrical container, by considering the coupling of two Kelvin (inertial) waves. The parametric centrifugal instability known for this system is shown to saturate when one expands the Navier–Stokes equation to higher order in the assumed small precession parameter (ratio of precession to rotation frequencies) with the derivation of two coupled Landau equations suitable to describe the dynamics of the modes. It is shown that an azimuthal mean flow with differential rotation is generated by this modes coupling. The time evolution of the associated dynamical system is studied. These theoretical results can be compared with water experiments and also to some numerical simulations where viscosity and finite length effects cannot be neglected. |
| |
Keywords: | Weakly nonlinear analysis Hydrodynamics Mode coupling Rotation, Precessing flows |
|
|