首页 | 本学科首页   官方微博 | 高级检索  
     


Nonlinear Convection in a Rotating Annulus with a Finite Gap
Authors:C.X. Chen  Keke Zhang
Affiliation:1. Department of Earth and Space Science , University of Science and Technology of China , Hefei;2. School of Mathematical Sciences , University of Exeter , Exeter , EX4 4QE , UK
Abstract:

Thermal convection in a fluid-filled gap between the two corotating, concentric cylindrical sidewalls with sloping curved ends driven by radial buoyancy was first studied by Busse (Busse, F.H., "Thermal instabilities in rapidly rotating systems", J. Fluid Mech . 44 , 441-460 (1970)). The annulus model captures the key features of rotating convection in full spherical geometry and has been widely employed to study convection, magnetoconvection and dynamos in planetary systems, usually in connection with the small-gap approximation neglecting the effect of azimuthal curvature of the annulus. This article investigates nonlinear thermal convection in a rotating annulus with a finite gap through numerical simulations of the full set of nonlinear convection equations. Three representative cases are investigated in detail: a large-gap annulus with the ratio of the radii ( s i and s o ) of the sidewalls ξ = s i / o s = 0.1, a medium-gap annulus with ξ = 0.35 and a small-gap annulus with ξ = 0.8. Near the onset of convection, the effect of rapid rotation through the sloping ends forces the first (Hopf) bifurcation in the form of small-scale, steadily drifting rolls (thermal Rossby waves). At moderately large Rayleigh numbers, a variety of different convection patterns are found, including mixed-mode steadily drifting, quasi-periodic (vacillating) and temporally chaotic convection in association with various temporal and spatial symmetry-breaking bifurcations. Our extensive simulations suggest that competition between nonlinear and rotational effects with increasing Rayleigh number leads to an unusual sequence of bifurcation characterized by enlarging the spatial scale of convection.
Keywords:Rotating Convection  Bussse Annulus  Bifurcations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号