Magnetic instabilities in rapidly rotating spherical geometries I. from cylinders to spheres |
| |
Authors: | David R. Fearn Werner S. Weiglhofer |
| |
Affiliation: | Department of Mathematics , University of Glasgow, University Gardens , Glasgow , G12 8QW , Scotland |
| |
Abstract: | Abstract The solution of the full nonlinear hydromagnetic dynamo problem is a major numerical undertaking. While efforts continue, supplementary studies into various aspects of the dynamo process can greatly improve our understanding of the mechanisms involved. In the present study, the linear stability of an electrically conducting fluid in a rigid, electrically insulating spherical container in the presence of a toroidal magnetic field Bo(r,θ)lø and toroidal velocity field Uo(r,θ)lø, [where (r,θ,ø) are polar coordinates] is investigated. The system, a model for the Earth's fluid core, is rapidly rotating, the magnetostrophic approximation is used and thermal effects are excluded. Earlier studies have adopted a cylindrical geometry in order to simplify the numerical analysis. Although the cylindrical geometry retains the fundamental physics, a spherical geometry is a more appropriate model for the Earth. Here, we use the results which have been found for cylindrical systems as guidelines for the more realistic spherical case. This is achieved by restricting attention to basic states depending only on the distance from the rotation axis and by concentrating on the field gradient instability. We then find that our calculations for the sphere are in very good qualitative agreement both with a local analysis and with the predictions from the results of the cylindrical geometry. We have thus established the existence of field gradient modes in a realistic (spherical) model and found a sound basis for the study of various other, more complicated, classes of magnetically driven instabilities which will be comprehensively investigated in future work. |
| |
Keywords: | Earth's Core hydromagnetic waves magnetic instabilities spherical geometry |
|
|