首页 | 本学科首页   官方微博 | 高级检索  
     


Kinematic dynamo action in a sphere: Effects of periodic time-dependent flows on solutions with axial dipole symmetry
Authors:Ashley P. Willis  David Gubbins
Affiliation:1. ash@earth.leeds.ac.uk
Abstract:Choosing a simple class of flows, with characteristics that may be present in the Earth's core, we study the ability to generate a magnetic field when the flow is permitted to oscillate periodically in time. The flow characteristics are parameterised by D, representing a differential rotation, M, a meridional circulation, and C, a component characterising convective rolls. The dynamo action of all solutions with fixed parameters (steady flows) is known from earlier studies. Dynamo action is sensitive to these flow parameters and fails spectacularly for much of the parameter space where magnetic flux is concentrated into small regions, leading to high diffusion. In addition, steady flows generate only steady or regularly reversing oscillatory fields and cannot therefore reproduce irregular geomagnetic-type reversal behaviour. Oscillations of the flow are introduced by varying the flow parameters in time, defining a closed orbit in the space ( D,?M ). When the frequency of the oscillation is small, the net growth rate of the magnetic field over one period approaches the average of the growth rates for steady flows along the orbit. At increased frequency time-dependence appears to smooth out flux concentrations, often enhancing dynamo action. Dynamo action can be impaired, however, when flux concentrations of opposite signs occur close together as smoothing destroys the flux by cancellation. It is possible to produce geomagnetic-type reversals by making the orbit stray into a region where the steady flows generate oscillatory fields. In this case, however, dynamo action was not found to be enhanced by the time-dependence. A novel approach is being taken to solve the time-dependent eigenvalue problem where, by combining Floquet theory with a matrix-free Krylov-subspace method, we can avoid large memory requirements for storing the matrix required by the standard approach.
Keywords:Kinematic dynamos  Time-dependent stability  Geomagnetism  Floquet theory  Eigenvalue problems
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号