首页 | 本学科首页   官方微博 | 高级检索  
     


A paradox in measuring the magnetic field of the Sun
Authors:V. A. Kotov
Affiliation:(1) Research Institute Crimean Astrophysical Observatory, pos. Nauchny, 98409 Crimea, Ukraine
Abstract:Significant discrepancies are often observed among the values of the mean magnetic field (MMF) of the Sun as a star observed by various instruments using various spectral lines. This is conventionally attributed to the measurement errors and “saturation” of a solar magnetograph in fine-structure photospheric elements with a strong magnetic field. Measurements of the longitudinal MMF performed in 1968–2006 at six observatories are compared in this paper. It is shown that the degree of discrepancy (slopes b of linear regression lines) varies significantly over the phase of the 11-year cycle. This gives rise to a paradox: the magnetograph calibration is affected by the state of the Sun itself. The proposed explanation is based on quantum properties of light, namely, nonlocality and “coupling” of photons whose polarization at the telescope-spectrograph output is determined by spacious parts of the solar disk. In this case, the degree of coupling, or “identity,” of photons depends on the field distribution in the photosphere and the instrument design (as Bohr said, “the instrument inevitably affects the result”). The “puzzling” values of slope b are readily explained by the dependence of the coupling on the solar-cycle phase. The very statistical nature of light makes discrepancies unavoidable and requires the simple averaging of data to obtain the best approximation of the actual MMF. A 39-year time series of the MMF absolute value is presented, which is indicative of significant variations in the magnitude of the solar magnetic field with a cycle period of 10.5(7) yr.
Keywords:Sun  magnetic field  photons  nonlocality
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号