Cycling the representer algorithm for variational data assimilation with a nonlinear reduced gravity ocean model |
| |
Authors: | Hans E. Ngodock Scott R. Smith Gregg A. Jacobs |
| |
Affiliation: | aThe Naval Research Laboratory, Building 1009, Stennis Space Center, MS 39529, USA |
| |
Abstract: | The representer method was used by [Ngodock, H.E., Jacobs, G.A., Chen, M., 2006. The representer method, the ensemble Kalman filter and the ensemble Kalman smoother: a comparison study using a nonlinear reduced gravity ocean model. Ocean Modelling 12, 378–400] in a comparison study with the ensemble Kalman filter and smoother involving a 1.5 nonlinear reduced gravity idealized ocean model simulating the Loop Current (LC) and the Loop Current eddies (LCE) in the Gulf of Mexico. It was reported that the representer method was more accurate than its ensemble counterparts, yet it had difficulties fitting the data in the last month of the 4-month assimilation window when the data density was significantly decreased. The authors attributed this failure to increased advective nonlinearities in the presence of an eddy shedding causing the tangent linear model (TLM) to become inaccurate. In a separate study [Ngodock, H.E., Smith, S.R., Jacobs, G.A., 2007. Cycling the representer algorithm for variational data assimilation with the Lorenz attractor. Monthly Weather Review 135 (2), 373–386] applied the cycling representer algorithm to the Lorenz attractor and demonstrated that the cycling solution was able to accurately fit the data within each cycle and beyond the range of accuracy of the TLM, once adjustments were made in the early cycles, thus overcoming the difficulties of the non-cycling solution. The cycling algorithm is used here in assimilation experiments with the nonlinear reduced gravity model. It is shown that the cycling solution overcomes the difficulties encountered by the non-cycling solution due to a limited time range of accuracy of the TLM. Thus, for variational assimilation applications where the TLM accuracy is limited in time, the cycling representer becomes a very powerful and attractive alternative, given that its computational cost is significantly lower than that of the non-cycling algorithm. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|